I read an Advance Reader Copy (ARC) of Fashionopolis: The Price of Fast Fashion and the Future of Clothes by Dana Thomas. If I were a better advance reader, I would time this to come out the week of publication, around September 3, 2019. But, I wrote it in July, when I read the book, and then set it aside due to anger. In November, I decided to finish it up and post my thoughts.
This is not an expose about huge Fast Fashion chains that serve the mass market. Lucy Siegle of the Guardian does an excellent job covering that beat.
Ms Thomas covers the business of fashion and she has fantastic industry access. I read and blogged about her earlier book, Deluxe, which covers the luxury end of the market. This time, she writes about the Price of Furious Fashion. Her publisher categorizes the book under: Business, Design, Technology.
It's a good survey of the history of fashion production and the current toll that it takes. However, the book shines when Thomas takes deep dives with makers that show how to make clothing with smaller environmental footprints.
For instance, I have made my skepticism about organic cotton known. But, I learned that naturally-colored Foxfibre is also naturally insect-resistant. The Tannins that give the cotton color, are bitter; insects don't like to eat them.
I don't like the reductive way that Thomas segments the market into organic and "all the rest." She covers the business of fashion, but she's not a scientist nor was there any evidence in the book that she spent time interviewing scientists.
For instance, Stella McCartney's Environmental Profit and Loss (EP&L) showed that virgin cashmere had roughly one hundred times the environmental impact of virgin wool (page 167). Therefore, Stella McCartney does not use virgin cashmere in her collections.
How do you put a number on the destruction of an irreplaceable ecosystem I wrote about in The planetary cost of cashmere? Of the extinction of snow leopards in More bad news about cashmere.
McCartney hired a sustainability and ethical trade chief, Claire Bergkamp. Bergkamp, in turn, hired the accounting firm, PriceWaterhouseCoopers, to audit her business (EP&L.) Accountants do what they do-- place numerical values on stuff. At the end of the day, the numbers contain the biases of the makers of the model.
The numbers are maddeningly opaque and McCartney, Bergkamp and Thomas felt no need to look under the hood to find how those numbers are derived. To a scientist, that's very disappointing.
On page 169, we learn that McCartney's EP&L determines that regenerated or 'reclaimed' cashmere is 92% less damaging to the environment than virgin cashmere. She calls it postmanufacturing waste. (I call it preconsumer waste and use it for more than half my sewing.)
This allows Bergkamp to throw around numbers like "though cashmere only made up 0.13% of [Stella McCartney's] overall raw material usage in 2015, it accounted for 25% of the company's total environmental impact; after adopting the use of regenerated cashmere in 2016, the impact dropped to 2 percent."
"Luxury fashion should use organic cotton--I don't think there is any excuse not to," said Bergkamp.
You get the idea. Thomas takes so many claims at face value, particularly regarding natural vs. synthetic dyes and vegan vs. animal materials.
The book is a good survey on what people are trying, particularly at the luxury end of the market. Don't believe any of the scientific claims. There is no guarantee that nonfiction books were fact-checked. How do you fact-check a closely-held proprietary EP&L system anyway?
Monday, November 04, 2019
Saturday, November 02, 2019
Car tires, a bigger threat than polyester blouses
I sound like a broken record, but the culprit is almost always cars.
Cars are a death cult. They cause most of our air and water pollution, green house gas emissions, and consume most of the land in the cities with their voracious appetite for parking spaces and road space.
In Heavy Metal in LA, I explained that the biggest source of heavy metal contamination in Los Angeles waters is cars. Now we learn that cars are the biggest source of microplastics in the San Francisco Bay Area. The biggest likely source of microplastics in California coastal waters? Our car tires
Sewists can quit obsessing over polyester use. The much bigger problem is all of our cars.
The methodology section starts on page 30. They collected and sieved microparticles from storm runoff, sewage treatment plants and sediment. Then they sieved again and again to separate out particles by size.
Particles were further sorted by color, shape and appearance. Finally, the material composition of 7% of the microparticles were determined by Raman and FTIR spectroscopy. Not all microparticles were plastics. E.g. some were glass or organic materials.
The most astonishing finding was the abundance of black, rubbery fragments.
I suspect that the results would be the same if the expensive and laborious study was repeated in Los Angeles.
Don't feel bad if you wear polyester blouses or fleece jackets instead of exclusively natural fibers. Just wash them in the coolest water that still gets them clean, air-dry them, and walk/bike/transit instead of driving.
Those are choices that really matter.
Cars are a death cult. They cause most of our air and water pollution, green house gas emissions, and consume most of the land in the cities with their voracious appetite for parking spaces and road space.
In Heavy Metal in LA, I explained that the biggest source of heavy metal contamination in Los Angeles waters is cars. Now we learn that cars are the biggest source of microplastics in the San Francisco Bay Area. The biggest likely source of microplastics in California coastal waters? Our car tires
Cars driving over Golden Gate Bridge photo from LA Times |
Rainfall washes more than 7 trillion pieces of microplastics, much of it tire particles left behind on streets, into San Francisco Bay each year — an amount 300 times greater than what comes from microfibers washing off polyester clothes, microbeads from beauty products and the many other plastics washing down our sinks and sewers.I downloaded and read the SFEI report, Understanding Microplastic Levels, Pathways, and Transport in the San Francisco Bay Region.
The methodology section starts on page 30. They collected and sieved microparticles from storm runoff, sewage treatment plants and sediment. Then they sieved again and again to separate out particles by size.
Particles were further sorted by color, shape and appearance. Finally, the material composition of 7% of the microparticles were determined by Raman and FTIR spectroscopy. Not all microparticles were plastics. E.g. some were glass or organic materials.
Particles found in this study |
A total of 171 microparticles were classified as unknown potentially rubber, which represents 84% of black, rubbery fragments that were analyzed by spectroscopy, or 44% of all fragments analyzed (21% of all particles analyzed). Only one site, Rodeo Creek (a mostly rural site), had zero rubbery fragments.The discussion explains why they are sure that the black rubbery fragments are tire wear. They also summarize findings about the prevalence and abundance of tire wear in the environment by other researchers starting on page 55.
I suspect that the results would be the same if the expensive and laborious study was repeated in Los Angeles.
Don't feel bad if you wear polyester blouses or fleece jackets instead of exclusively natural fibers. Just wash them in the coolest water that still gets them clean, air-dry them, and walk/bike/transit instead of driving.
Those are choices that really matter.
Related Posts:
Friday, November 01, 2019
Sea People
Bad Dad leads the {pages} non-fiction book club at {pages} a bookstore and we read Sea People by Christina Thompson two months ago.
Sea People is an absolute delight and you can read my review on Goodreads.
DiNapoli et al showed that the moai monuments on Easter Island are mostly markers for freshwater seeps. The larger and more reliable the freshwater source, the larger the monument.
That explains most of the moai. Some of the inland ones were discovered to be very large time-release fertilizer stakes. Quarrying stone for Easter Island statues made soil more fertile for farming.
Sea People is an absolute delight and you can read my review on Goodreads.
This book was written specifically for me.*Thompson writes with empathy and good humor, but you have to laugh at some of the whacky ideas white people have about people who aren't white. Speaking of which, I ran across a couple of science stories about the people of Easter Island, which completely skewer Jared Diamond's Guns, Germs and Steel.
It tells the story of how the Lapita people, originally from the island of Taiwan (my two grandmothers,) sailed the vast Pacific ocean and settled an area that covers 25% of the earth's surface.
Even if you don't have Lapita grandmothers, read it for the detective story, natural science, history and anthropology. There is something for everyone.
It's written in an accessible and sympathetic style, with a well-annotated notes/bibliography section in the end for those who want to read deeper.
* IRL, I have a high affinity for nonlinear dynamics, climatology, winds and currents. A book that includes not just my grandmothers' history, but 'insertion points' into the Pacific, El Nino/Southern Oscillation (ENSO) and paleoclimate could not be better designed for my interests.
DiNapoli et al showed that the moai monuments on Easter Island are mostly markers for freshwater seeps. The larger and more reliable the freshwater source, the larger the monument.
- Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources paper at Plos One.
- Smithsonian synopsis for lay people
Moia picture from Smithsonian article credited to Adwo/Fotolia |
Researchers traditionally have assumed that builders of the island’s partially buried quarry statues had either planned to move them elsewhere on the island or abandoned them. Designs on the roughly 6.6-meter-tall quarry statues display similarities to those on the only other Rapa Nui statue displaying numerous carved images. That carved figure was previously found at a ceremonial site nearly 20 kilometers west of the quarry.
Although the quarry measures only about 800 to 1,000 meters across, the new soil data show that it was a “little productive gold mine” for farming, says archaeologist Christopher Stevenson of Virginia Commonwealth University in Richmond, who did not participate in the study. Reeds growing in a lake at the base of the quarry would have provided additional phosphorus to the soil, he says.
“The area immediately to the east of the quarry was and is one of the most intensively settled parts of the island, and now that makes much more sense,” Stevenson says.
Wednesday, October 30, 2019
Organic =/= Sustainable
I cringe every time I read someone call organic cotton sustainable. It uses so much more land and water. Natural dyes can double the amount of land required to produce fabric.
I know that I can never convert the die-hard purists, but they are probably not reading this blog anyway.
Technology Review (MIT's Alumni magazine) sums up the current state of our knowledge, Sorry—organic farming is actually worse for climate change.
(Alfalfa is grown in the desert because it will tolerate salty soil and water.)
Genetically modified cotton grows with half the water as organic cotton, and it can tolerate salty soil. You can use the organic practices of crop rotation, cover crops and compost/manure and combine it with technology in a responsible way.
For instance, GMO Bt cotton manufactures its own protection against cotton borers and bollworms. In fact, the higher the salt content of the soil, the more pesticides the plant produces. Bt cotton is sold with and without resistance to Round-up. Most of the seeds are sold with resistance to both, but that doesn't mean farmers are spraying Round-up willy nilly.
Most farmers are smart enough not to spray chemicals that they don't need. If weeds are not a problem in that field in that year, then they won't spray.
Small-scale organic farm are laboratories where farmers can test novel ways to grow crops. Scientists in labs can also develop and test new crops. Then we can combine the best of both approaches.
I read that only 1% of US-grown cotton is organic, while 15-16% (and climbing) are grown from GMO seeds and unsprayed. It's sometimes sold as "clean cotton" or "better cotton" and purchased by IKEA and Uniqlo.
I read laments by younger sewists on blogs and Instagram that they are sorry they can't afford to sew with organic fabrics. That saddens me. We don't have enough planets for everyone to go fully organic. But we can blend the best of organic practices with technology for a sustainable future for everyone--not just the rich.
I know that I can never convert the die-hard purists, but they are probably not reading this blog anyway.
Technology Review (MIT's Alumni magazine) sums up the current state of our knowledge, Sorry—organic farming is actually worse for climate change.
Organic practices can reduce climate pollution produced directly from farming – which would be fantastic if they didn’t also require more land to produce the same amount of food.I've written ad nauseum about how organic cotton uses more water, which is scarce in many of the arid regions where the highest quality cotton is grown, like in my home region of the US Southwest. Irrigation with groundwater has left the soil so salty that crops can not grow.
Clearing additional grasslands or forests to grow enough food to make up for that difference would release far more greenhouse gas than the practices initially reduce, a new study in Nature Communications finds.
(Alfalfa is grown in the desert because it will tolerate salty soil and water.)
Genetically modified cotton grows with half the water as organic cotton, and it can tolerate salty soil. You can use the organic practices of crop rotation, cover crops and compost/manure and combine it with technology in a responsible way.
For instance, GMO Bt cotton manufactures its own protection against cotton borers and bollworms. In fact, the higher the salt content of the soil, the more pesticides the plant produces. Bt cotton is sold with and without resistance to Round-up. Most of the seeds are sold with resistance to both, but that doesn't mean farmers are spraying Round-up willy nilly.
Most farmers are smart enough not to spray chemicals that they don't need. If weeds are not a problem in that field in that year, then they won't spray.
Small-scale organic farm are laboratories where farmers can test novel ways to grow crops. Scientists in labs can also develop and test new crops. Then we can combine the best of both approaches.
I read that only 1% of US-grown cotton is organic, while 15-16% (and climbing) are grown from GMO seeds and unsprayed. It's sometimes sold as "clean cotton" or "better cotton" and purchased by IKEA and Uniqlo.
I read laments by younger sewists on blogs and Instagram that they are sorry they can't afford to sew with organic fabrics. That saddens me. We don't have enough planets for everyone to go fully organic. But we can blend the best of organic practices with technology for a sustainable future for everyone--not just the rich.
Labels:
Bullshit,
Environment,
Food,
Sewing,
Sustainable Sewing,
Technology,
Water
Wednesday, October 09, 2019
Climate Change: Sitting in the Dark
Northern California is about to go dark in a few minutes due to a Public Safety Power Shutoff (PSPS) according to the PG&E outage map. This was forecasted well in advance, but forecasting the exact timing has been difficult. The published anticipated power shutoff start times have been earlier than the actual shutoff times.
If you click on each colored outage circle on the map above, you can get more info along with another map of the affected area. KQED made an easier to comprehend outage map and explainer.
The National Weather Service California Fire Weather map was also not reassuring.
Just as "land doesn't vote" maps may give an exaggerated picture, I wanted to see how many people--not just land area--were affected. It turned out to be a lot, 587,252 customers for PG&E alone. Each household (customer) can have multiple residents. Assuming an average of 3 people per household, that's about 1.7 million people. UC Berkeley had planned to cancel classes in the event of a power outage.
[My kid asked me if we have an earthquake kit. My reply is that I had started to assemble one years ago, but I can't find it among the boxes from my last 2 moves. ;-) I'm going to buy some drinking water containers and put her to work finding and testing all of our headlamps. Do iodine tablets ever expire?
It's a good thing we never got rid of our landline. Copper wire landlines continue to work after cell phone batteries and towers run out of juice.]
The downslope winds are moving southward through California. Santa Ana winds will probably arrive tonight or tomorrow in southern California.
Check to see if you in a Southern California Edison (SCE) PSPS area. So far, only 65 customers are affected.
But, 761194 customers may be hit by PSPS between PG&E and SCE. Add in San Diego Gas & Electric and potentially 2.5 million (out of 38 million) Californians may be sitting in the dark.
How did we get here? The answer is complex, but I disagree with this woman. She was burned out of her old home in Paradise, CA, and now she's upset about a pre-emptive power outage to prevent another fire?
I mostly agree with the LA Times editorial board on this one:
The 4,952 residents of census tract 2117.03 in Los Angeles, California living in 0.07108 square miles are not as culpable as the people living out in the woods. Yes, some of them do drive alone to work, but mostly because transit is in a death spiral (that we are working really hard on reversing.) They took up driving recently so they can hold on to their low-paying jobs that they desperately need. Moreover, they drive very few miles. The Paradise census tract is remarkably similar in income, housing cost and building age.
35 million, ~90% of Californians, will still have electricity because 95% of Californians live in urban areas.
The unlucky 5% potentially left in the dark live in urban clusters, as explained by Citylab:
We should not raise utility rates for poor people in Compton to pay for undergrounding utilities for the billionaires of Malibu. The rich can pay to underground their own utilities.
I'm running out of steam here, but want to remind readers that Fire is a river that runs uphill. Don't move into a box canyon with only one downhill escape route.
Think about what it means to insist upon not spending a dime to improve fossil fuel infrastructure. Suppose you were a mayor of a large city of 4 Million people and your own engineers told you to replace 70% of your fossil fuel power plants with renewable energy + battery storage but rebuild the other 30% of your power plants with new combined cycle technology so you can squeeze twice as much energy out of each molecule of CO2 emitted. What would you do?
The cheap, feel-good answer is to shut down all of your local natural gas power plants and take the photo-ops as a green mayor. Then sign a 50-year contract to buy electricity from a new natural-gas power plant in Utah.
What happens when the inter-state electricity transmission lines are shut down for high winds? We'll sure miss our local power plants then.
I recently read Vaclav Smil's Natural Gas: Fuel for the 21st Century? and call bullshit on a certain mayor. (His publisher took out the ? sign. Smil examines the case for Natural Gas and is not impressed by the hype.)
I'll be back later with more info about the differences between old and new natural gas power plants (they vary a huge amount in energy generated per unit of CO2) and natural gas production methods (super-emitters vs the best.)
PG&E interactive map |
KQED more informative planned outage map |
Just as "land doesn't vote" maps may give an exaggerated picture, I wanted to see how many people--not just land area--were affected. It turned out to be a lot, 587,252 customers for PG&E alone. Each household (customer) can have multiple residents. Assuming an average of 3 people per household, that's about 1.7 million people. UC Berkeley had planned to cancel classes in the event of a power outage.
[My kid asked me if we have an earthquake kit. My reply is that I had started to assemble one years ago, but I can't find it among the boxes from my last 2 moves. ;-) I'm going to buy some drinking water containers and put her to work finding and testing all of our headlamps. Do iodine tablets ever expire?
It's a good thing we never got rid of our landline. Copper wire landlines continue to work after cell phone batteries and towers run out of juice.]
The downslope winds are moving southward through California. Santa Ana winds will probably arrive tonight or tomorrow in southern California.
Check to see if you in a Southern California Edison (SCE) PSPS area. So far, only 65 customers are affected.
But, 761194 customers may be hit by PSPS between PG&E and SCE. Add in San Diego Gas & Electric and potentially 2.5 million (out of 38 million) Californians may be sitting in the dark.
How did we get here? The answer is complex, but I disagree with this woman. She was burned out of her old home in Paradise, CA, and now she's upset about a pre-emptive power outage to prevent another fire?
“I’m really mad at them,” Heart fumed. “We’ve had high winds in California for years and they’ve never shut down the power. It’s unconscionable.”The climate is a changing and it is largely due to people who move out to the margins, driving a lot of vehicle miles. A hotter planet means drier vegetation, particularly later in the dry season. More people living out in the Wildlands Urban Interface (WUI) means more ignition sources and fuel for fires.
PG&E should “bury their lines, fix their lines, take the grid and secure it better,” she said. Anything but turning off the power to 34 counties throughout California, which she sees as a completely cover-your-butt move.
I mostly agree with the LA Times editorial board on this one:
It wasn’t PG&E officials who approved housing developments in high-risk areas. In fact, the utility can’t say no to serving those homes, no matter how great the fire risk. The utility also doesn’t make decisions about how the vegetation around their customers’ houses and the forests nearby are managed. Nor is it the utility’s fault that human-caused climate change has created conditions that fuel massive wildfires. That’s a disgrace we all own.Some of us are more responsible for climate change than others. The people living out in the woods should not be pointing fingers at the poor transit-riding urban residents. The urban poor are not driving, flying or eating beef-heavy "keto" diets. The climate would not be changing if all of us lived like the urban poor.
The 4,952 residents of census tract 2117.03 in Los Angeles, California living in 0.07108 square miles are not as culpable as the people living out in the woods. Yes, some of them do drive alone to work, but mostly because transit is in a death spiral (that we are working really hard on reversing.) They took up driving recently so they can hold on to their low-paying jobs that they desperately need. Moreover, they drive very few miles. The Paradise census tract is remarkably similar in income, housing cost and building age.
35 million, ~90% of Californians, will still have electricity because 95% of Californians live in urban areas.
The unlucky 5% potentially left in the dark live in urban clusters, as explained by Citylab:
But we're not just talking about cities here. The new figures represent the population in "urban areas," which the Census Bureau defines as "densely developed residential, commercial and other nonresidential areas."Why should people who put up with the expense and aggravation (and also the joys) of urban living with a few million of their closest neighbors pay for undergrounding the utilities of a scattered few in the woods, at the expense of $3 Million per mile? We'd rather spend the money undergrounding our own utilities.
There are officially two types of urban areas: “urbanized areas” of 50,000 or more people and “urban clusters” of between 2,500 and 50,000 people. For the 2010 count, the Census Bureau has defined 486 urbanized areas, accounting for 71.2 percent of the U.S. population. The 3,087 urban clusters account for 9.5 percent of the U.S. population.
We should not raise utility rates for poor people in Compton to pay for undergrounding utilities for the billionaires of Malibu. The rich can pay to underground their own utilities.
I'm running out of steam here, but want to remind readers that Fire is a river that runs uphill. Don't move into a box canyon with only one downhill escape route.
Think about what it means to insist upon not spending a dime to improve fossil fuel infrastructure. Suppose you were a mayor of a large city of 4 Million people and your own engineers told you to replace 70% of your fossil fuel power plants with renewable energy + battery storage but rebuild the other 30% of your power plants with new combined cycle technology so you can squeeze twice as much energy out of each molecule of CO2 emitted. What would you do?
The cheap, feel-good answer is to shut down all of your local natural gas power plants and take the photo-ops as a green mayor. Then sign a 50-year contract to buy electricity from a new natural-gas power plant in Utah.
Intermountain power plant is ~600 miles away from LA and transmission lines go through fire corridors. This is not a model of disaster resiliency. |
I recently read Vaclav Smil's Natural Gas: Fuel for the 21st Century? and call bullshit on a certain mayor. (His publisher took out the ? sign. Smil examines the case for Natural Gas and is not impressed by the hype.)
I'll be back later with more info about the differences between old and new natural gas power plants (they vary a huge amount in energy generated per unit of CO2) and natural gas production methods (super-emitters vs the best.)
Labels:
Bullshit,
California,
Energy,
Environmental Hazards,
Housing,
Weather
Friday, August 09, 2019
Wear polyester if you like
I read Sewing Eco-Guilt? Killer! and groaned. I left a comment but it didn't appear so I'm leaving my response here.
I'm a scientist and I don't care if you wear polyester or organic hemp as long as you curtail driving and flying (and eat less beef.)
I don't even care if your car is electric. I just want you out of a car.
Yes, polyester is made of fossil fuels, but at least it's sequestered in your blouse. Nothing degrades in a landfill, polyester and natural fibers alike. The important thing is to cut down on our consumption.
I wrote a blog series about sustainability and sewing. It has links to actual data.
I'm a scientist and I don't care if you wear polyester or organic hemp as long as you curtail driving and flying (and eat less beef.)
I don't even care if your car is electric. I just want you out of a car.
Yes, polyester is made of fossil fuels, but at least it's sequestered in your blouse. Nothing degrades in a landfill, polyester and natural fibers alike. The important thing is to cut down on our consumption.
I wrote a blog series about sustainability and sewing. It has links to actual data.
Labels:
Bullshit,
Energy,
Food,
Sewing,
Sustainability,
Sustainable Sewing,
Transportation
Tuesday, July 16, 2019
Organic Pesticides Redux
I'm cleaning up a lot of open browser tabs and finishing some blog posts stuck in draft mode limbo. I may have mentioned that I was elected an executive director for League of Women Voters of Los Angeles County. My portfolio/niche is to monitor governmental happenings in air/water quality and climate change for LA County. I am learning a ton, and will share some of what I learn here.
However, I want to make clear that this blog is and will remain a personal blog. My views do not necessarily reflect those of the LWVLAC as a whole (though I joined them because we have similar views.)
I mentioned in Heavy Metal in LA that our region grapples with unsafe levels of copper in creeks and estuaries. This led me to learn about the sources of copper. In this urban environment, it's almost entirely cars and the people who drive them.
I mentioned in passing that there are no kale farms nearby and no one took the bait. Did you know that kale, both organic and conventional, is laden with copper? Read Organic Pesticides: Not An Oxymoron. Also look at this Texas A&M extension list of fungicides used in kale production.
All kale gets sprayed--but it is sprayed with different stuff based on how it will be marketed. According to this list, Copper Hydroxide and Cuprous Oxide is sprayed on organic kale. Copper Sulfate is sprayed on conventional kale. Whichever you buy, wash it well, with a bit of detergent to remove residue.
Christie Wilcox wrote in Scientific American blog back in 2012:
I hope we get beyond the organic vs non-organic wars and farm in a sustainable, regenerative way that is healthier for the land, farmers and consumers.
In Sustainable Organic Pesticides, I mentioned that the active ingredients of Neem tree oil can be synthesized in laboratories, which reduces the amount of land and water needed for pest control. The same is also true for pyrethrins, the active insecticide ingredient in marigolds.
My mother used to grow a border of marigolds around the perimeter of her vegetable garden. I found the odor of the plants unpleasant and frequently felt ill around them. Later, I found out that I am allergic to ragweed and marigolds. The CDC recommends that "Pyrethrins generally should not be used by persons who are allergic to chrysanthemums or ragweed."
Look up at the table of things that are sprayed on kale. Yup. Organic kale is a transgenic Frankenfood that includes ground up bits of marigolds that can trigger an allergic reaction. I still eat kale, but wash it thoroughly.
Which gets me back to the hysteria about GMOs and the organic wars. The Environmental Working Group's (EWG) Dirty Dozen list comes from their tests for residues of conventional pesticides on produce purchased at a variety of markets and before washing.
EWG does not test for pesticides used in organic farming. There are a lot of them.
It's not a complete measure of all the risks. It underestimates the risks by not testing for organic pesticides. It also overestimates the risk because much of the residue washes off.
EWG rightfully points out that there is wide variation in how thoroughly people wash produce. Their samples also varied depending on where they bought the produce. Their measured pesticide load is not your pesticide exposure--it's a proxy that may or may not represent your actual exposure.
I give you another exhibit in organic vs organic wars, the cherry-picked study designed to give you the answer you want. When this article came out, the headlines all echoed "Organic diet intervention significantly reduces urinary pesticide levels in U.S. children and adults."
This is both a 'duh' type study as the conclusion is not surprising, but it's also one that can cause a great deal of stress and anxiety for those that cannot feed their children an 100% organic diet.
The experimental setup and data shows a more nuanced picture. I want to parse the results to some context.
Firstly, they sought volunteers in neighborhoods that do not have a lot of organic choices and selected volunteers that reported not eating much organic food before the study period. They followed 16 people in four cities, basically about one family in each city. This is a very small sample size.
Their urine was tested for a bunch of metabolites of pesticides. (Chemicals often break down in your body into smaller/related chemicals called metabolites.)
They tested only for pesticides used in conventional farming. They did not test for any chemicals used in organic farming. They tested for and found one metabolite that can originate from either organic or conventional pesticides. More on that later.
It's hard to eat 100% organic when you eat out or don't cook entirely from scratch at home--the way most of us eat. In this experiment, the researchers did 100% of the shopping and food prep, going as far as delivering meals to the homes of the subjects (and even packing lunches for them to take to work or school.)
Study participants need only heat and serve the prepared meals. I would have liked the study to give the families organic ingredients and cook their own meals their own way, but I can understand why they didn't. A study this small can't afford to have any confounding factors like how thoroughly cooks wash produce or whether the water they are washing with already has pesticides in it.
Short of plucking everyone out of their home environments and sequestering them, this was the best way of ensuring that they complied with the strict 100% organic diet.
The results are just what you expected, with a few surprises. Take a look at the table of detection frequencies (DF). The DFs went UP for a couple of metabolites/analytes after they switched from a conventional to organic diet!
However, the concentrations of pesticide metabolites went down overall. It was quite dramatic (down 95%) for some chemicals, which is reassuring because that means that our bodies quickly expel those chemicals rather than keeping it in our tissues.
This is where the nuance comes in. The amount of chemicals related to pyrethroid insecticides did not go down as much as for the other chemicals. The authors conjectured that it is because those insecticides are used around the house as well as on crops.
If your kids came home with head lice, you would probably use a product with pyrethroid compounds before the school would allow your child to return. If you live in tick country, you'd put it on before heading into the woods.
Remember the people who did not have detectable levels of trans-DCCA (a pyrethroid metabolite) when eating a conventional diet but then did have it when eating an organic diet? That means they did not get exposed to pyrethroid compounds from their homes or their conventional diet. (Or the levels they had in their urine fluctuated day to day, but their overall level was very low.)
The detection frequencies of trans-DCCA and cis-DCCA went up after switching to the organic diet. That strongly suggests that they probably got the pyrethroid insecticide exposure from the organic food, not from their homes as the authors suggested.
Read the author statements and the funding source of this study to learn why the experimental design and data interpretation has these flaws.
Whether it is permethrin from a lab or pyrethrin from marigolds, it's hard to avoid some chemicals because of their ubiquity.
BTW, just because something is detectable, doesn't mean it is unsafe. The reverse is true. We don't have good tests for some dangerous things.
Once I realized that this is not just a blog where I post pictures of my sewing and knitting projects, I decided to be a voice of reason that and to help dispel the mommy wars. You are not a bad mommy just because you don't have the time or money to serve your kids 100% organic diets.
I learned this level of detail because I have a BS in Chemistry and am allergic to ragweed. Whether my veggies are organic or conventional, I wash them (or at least rinse them when in a hurry.) Am I getting all of it off? Probably not. But, perfect is the enemy of done. As long as I can eat the veggies and not have a sore, scratchy throat afterwards, it's good enough.
It's good to ask questions about your food. But let's focus on the big picture. Buy real food, wash it well, eat your veggies.
However, I want to make clear that this blog is and will remain a personal blog. My views do not necessarily reflect those of the LWVLAC as a whole (though I joined them because we have similar views.)
I mentioned in Heavy Metal in LA that our region grapples with unsafe levels of copper in creeks and estuaries. This led me to learn about the sources of copper. In this urban environment, it's almost entirely cars and the people who drive them.
Copper-Impaired Waterbodies in the Los Angeles Basin |
All kale gets sprayed--but it is sprayed with different stuff based on how it will be marketed. According to this list, Copper Hydroxide and Cuprous Oxide is sprayed on organic kale. Copper Sulfate is sprayed on conventional kale. Whichever you buy, wash it well, with a bit of detergent to remove residue.
Christie Wilcox wrote in Scientific American blog back in 2012:
In head-to-head comparisons, natural pesticides don't fare any better than synthetic ones. When I compared the organic chemicals copper sulfate and pyrethrum to the top synthetics, chlorpyrifos and chlorothalonil, I found that not only were the organic ones more acutely toxic, studies have found that they are more chronically toxic as well, and have higher negative impacts on non-target species. My results match with other scientific comparisons. In their recommendations to Parliament in 1999, the Committee on European Communities noted that copper sulfate, in particular, was far more dangerous than the synthetic alternative. A review of their findings can be seen in the table on the right (from a recent review paper). Similarly, head to head comparisons have found that organic pesticides aren't better for the environment, either.I don't know why Wilcox's list and the TAMU list disagree on whether conventional or organic get CuSO4 salt. Whatever. In water, the salt breaks down into Cu++ ions and messes up the flora and fauna that grow in and near the water bodies.
I hope we get beyond the organic vs non-organic wars and farm in a sustainable, regenerative way that is healthier for the land, farmers and consumers.
In Sustainable Organic Pesticides, I mentioned that the active ingredients of Neem tree oil can be synthesized in laboratories, which reduces the amount of land and water needed for pest control. The same is also true for pyrethrins, the active insecticide ingredient in marigolds.
My mother used to grow a border of marigolds around the perimeter of her vegetable garden. I found the odor of the plants unpleasant and frequently felt ill around them. Later, I found out that I am allergic to ragweed and marigolds. The CDC recommends that "Pyrethrins generally should not be used by persons who are allergic to chrysanthemums or ragweed."
Look up at the table of things that are sprayed on kale. Yup. Organic kale is a transgenic Frankenfood that includes ground up bits of marigolds that can trigger an allergic reaction. I still eat kale, but wash it thoroughly.
Which gets me back to the hysteria about GMOs and the organic wars. The Environmental Working Group's (EWG) Dirty Dozen list comes from their tests for residues of conventional pesticides on produce purchased at a variety of markets and before washing.
EWG does not test for pesticides used in organic farming. There are a lot of them.
It's not a complete measure of all the risks. It underestimates the risks by not testing for organic pesticides. It also overestimates the risk because much of the residue washes off.
EWG rightfully points out that there is wide variation in how thoroughly people wash produce. Their samples also varied depending on where they bought the produce. Their measured pesticide load is not your pesticide exposure--it's a proxy that may or may not represent your actual exposure.
I give you another exhibit in organic vs organic wars, the cherry-picked study designed to give you the answer you want. When this article came out, the headlines all echoed "Organic diet intervention significantly reduces urinary pesticide levels in U.S. children and adults."
This is both a 'duh' type study as the conclusion is not surprising, but it's also one that can cause a great deal of stress and anxiety for those that cannot feed their children an 100% organic diet.
The experimental setup and data shows a more nuanced picture. I want to parse the results to some context.
Firstly, they sought volunteers in neighborhoods that do not have a lot of organic choices and selected volunteers that reported not eating much organic food before the study period. They followed 16 people in four cities, basically about one family in each city. This is a very small sample size.
Their urine was tested for a bunch of metabolites of pesticides. (Chemicals often break down in your body into smaller/related chemicals called metabolites.)
They tested only for pesticides used in conventional farming. They did not test for any chemicals used in organic farming. They tested for and found one metabolite that can originate from either organic or conventional pesticides. More on that later.
It's hard to eat 100% organic when you eat out or don't cook entirely from scratch at home--the way most of us eat. In this experiment, the researchers did 100% of the shopping and food prep, going as far as delivering meals to the homes of the subjects (and even packing lunches for them to take to work or school.)
Study participants need only heat and serve the prepared meals. I would have liked the study to give the families organic ingredients and cook their own meals their own way, but I can understand why they didn't. A study this small can't afford to have any confounding factors like how thoroughly cooks wash produce or whether the water they are washing with already has pesticides in it.
Short of plucking everyone out of their home environments and sequestering them, this was the best way of ensuring that they complied with the strict 100% organic diet.
The results are just what you expected, with a few surprises. Take a look at the table of detection frequencies (DF). The DFs went UP for a couple of metabolites/analytes after they switched from a conventional to organic diet!
Detection Frequency of analyzed chemicals in urine samples of test subjects on conventional and 100% organic diets. |
Urinary analyte concentrations (ng/mL) & percent change from conventional to organic diet. |
If your kids came home with head lice, you would probably use a product with pyrethroid compounds before the school would allow your child to return. If you live in tick country, you'd put it on before heading into the woods.
Remember the people who did not have detectable levels of trans-DCCA (a pyrethroid metabolite) when eating a conventional diet but then did have it when eating an organic diet? That means they did not get exposed to pyrethroid compounds from their homes or their conventional diet. (Or the levels they had in their urine fluctuated day to day, but their overall level was very low.)
The detection frequencies of trans-DCCA and cis-DCCA went up after switching to the organic diet. That strongly suggests that they probably got the pyrethroid insecticide exposure from the organic food, not from their homes as the authors suggested.
Read the author statements and the funding source of this study to learn why the experimental design and data interpretation has these flaws.
Whether it is permethrin from a lab or pyrethrin from marigolds, it's hard to avoid some chemicals because of their ubiquity.
BTW, just because something is detectable, doesn't mean it is unsafe. The reverse is true. We don't have good tests for some dangerous things.
Once I realized that this is not just a blog where I post pictures of my sewing and knitting projects, I decided to be a voice of reason that and to help dispel the mommy wars. You are not a bad mommy just because you don't have the time or money to serve your kids 100% organic diets.
I learned this level of detail because I have a BS in Chemistry and am allergic to ragweed. Whether my veggies are organic or conventional, I wash them (or at least rinse them when in a hurry.) Am I getting all of it off? Probably not. But, perfect is the enemy of done. As long as I can eat the veggies and not have a sore, scratchy throat afterwards, it's good enough.
It's good to ask questions about your food. But let's focus on the big picture. Buy real food, wash it well, eat your veggies.
Tuesday, July 02, 2019
Heavy Metal in LA
Several readers have commented that I am a source of interesting tidbits they can use at parties and to guide their private actions. I went down a rabbit hole recently in trying to understand the sources of heavy metal contamination in Los Angeles area waterways.
When I moved back to the beach, I joined my local League of Women Voters chapter, LWV of the Beach Cities. LWV is organized parallel to levels of government. So, you join at the local level, and that automatically signs you up for state (LWVC) and national (LWVUS) levels.
The national and state levels work very hard on expanding and defending voting rights and fair votes (including fighting gerrymandering). We had a setback at the Supreme Court recently, but we'll continue fighting at the legislative level.
If you are a student or have one in your household, ask them to join the LWV. Student memberships are free and it is a great inter-generational way to influence politics. Like the League of American Wheelmen, membership is coed, despite the historic gendered organization name.
I volunteered to help at the county level, LWVLAC (LA County). I wrote that am versatile; I can cover water, air or climate change. LOL. I found myself covering air, water AND climate change--at least until I can scheme to get more people to join the county board.
I dutifully signed up for email lists of the relevant government agencies like air and water quality boards at the state, regional and local levels. I try to read most of the email traffic, to familiarize myself with the local concerns and actions. It is eye-opening.
For instance, I noticed that LA Basin held meetings that discussed high levels of copper in the Ballona Creek watershed (near me and pictured above) and in waterways in Ventura County.
Ballona Creek watershed is regulated for 7 types of things that we don't want in it. Limits are set for the Total Maximum Daily Loads (TMDLs). I pulled these tables from the Ballona Creek Watershed Management Group EWMP Adaptive Management Report December 2018.
Some are easy, like trash. I think I showed a picture of a net that we use on the creek to catch trash on my IG feed last fall. Some things are medium hard; industrial pollutants can be cleaned up at its point source.
In dry weather, the trend is improving for most things except heavy metals and bacteria.
In wet weather, the heavy metal load increases due to urban runoff.
Selenium comes from agricultural runoff. Although LA hasn't had farms in recent decades, the agricultural pollution lingers. This is a problem throughout California.
The copper surprised me. There are no copper mines or kale farms in this area. What is the source of the copper that is ending up in our waterways and estuaries?
What about zinc? Are we using that much zinc oxide sunscreen?
The answer is cars. Lots and lots of cars.
Copper is prevalent in brake dust and stop and go traffic generates a lot of brake dust. Copper-Free Brake Initiative:
The bacteria? It's dog and human poop. Pick up after your dog.
The homelessness crisis is harder to solve, but it's a major reason why bacterial TMDL exceedances have gone up along with the number of people setting up camps along our waterways.
It's all related. Our housing crisis. Our car culture. Our water. Our air.
Next up, the Regional Housing Needs Assessment scandal that is building up in our backyard.
Hell-no! You will not do this in my name.
Until next time, please read some background info about RHNA.
When I moved back to the beach, I joined my local League of Women Voters chapter, LWV of the Beach Cities. LWV is organized parallel to levels of government. So, you join at the local level, and that automatically signs you up for state (LWVC) and national (LWVUS) levels.
The national and state levels work very hard on expanding and defending voting rights and fair votes (including fighting gerrymandering). We had a setback at the Supreme Court recently, but we'll continue fighting at the legislative level.
If you are a student or have one in your household, ask them to join the LWV. Student memberships are free and it is a great inter-generational way to influence politics. Like the League of American Wheelmen, membership is coed, despite the historic gendered organization name.
I volunteered to help at the county level, LWVLAC (LA County). I wrote that am versatile; I can cover water, air or climate change. LOL. I found myself covering air, water AND climate change--at least until I can scheme to get more people to join the county board.
I dutifully signed up for email lists of the relevant government agencies like air and water quality boards at the state, regional and local levels. I try to read most of the email traffic, to familiarize myself with the local concerns and actions. It is eye-opening.
The view from my handlebars as I rode my bike along the Ballona creek bike path in April 2019. |
Ballona Creek watershed is regulated for 7 types of things that we don't want in it. Limits are set for the Total Maximum Daily Loads (TMDLs). I pulled these tables from the Ballona Creek Watershed Management Group EWMP Adaptive Management Report December 2018.
7 types of things regulated by TMDLs. |
In dry weather, the trend is improving for most things except heavy metals and bacteria.
Dry weather Ballona creek pollution trends. |
Wet weather Ballona creek pollution trends. |
The copper surprised me. There are no copper mines or kale farms in this area. What is the source of the copper that is ending up in our waterways and estuaries?
What about zinc? Are we using that much zinc oxide sunscreen?
The answer is cars. Lots and lots of cars.
Copper is prevalent in brake dust and stop and go traffic generates a lot of brake dust. Copper-Free Brake Initiative:
On January 21, 2015, EPA, states, and the automotive industry signed an agreement to reduce the use of copper and other materials in motor vehicle brake pads. The agreement calls for reducing copper in brake pads to < 5 percent by weight in 2021 and 0.5 percent by 2025. In addition to copper, this voluntary initiative reduces mercury, lead, cadmium, asbestiform fibers, and chromium-six salts in motor vehicle brake pads.Zinc Sources in California Urban Runoff estimates that tire wear is responsible for 240,000 kg of zinc in urban runoff. The next largest source is zinc surfaces (galvanized steel, etc), at 40-100,000 kg.
The bacteria? It's dog and human poop. Pick up after your dog.
The homelessness crisis is harder to solve, but it's a major reason why bacterial TMDL exceedances have gone up along with the number of people setting up camps along our waterways.
It's all related. Our housing crisis. Our car culture. Our water. Our air.
Next up, the Regional Housing Needs Assessment scandal that is building up in our backyard.
Hell-no! You will not do this in my name.
Until next time, please read some background info about RHNA.
Labels:
Democracy,
Environment,
Environmental Hazards,
Los Angeles,
Pollution,
Science,
Traffic,
Water
Wednesday, June 19, 2019
The awful truth about Carbon Credits
I've long suspected that buying carbon offsets before flying is just greenwashing. ProPublica performed the detailed analysis and it's even worse than I suspected.
An Even More Inconvenient Truth by Lisa Song
An Even More Inconvenient Truth by Lisa Song
The appetite is global. For the airline industry and industrialized nations in the Paris climate accord, offsets could be a cheap alternative to actually reducing fossil fuel use.Lisa Song also touched on why I'm skeptical of Renewable Energy Credits (RECs), the sleight of hand that allows people to choose "100% renewable energy" 24/7, even when the sun isn't shining and the wind isn't blowing. The illusion is causing real harm.
But the desperate hunger for these carbon credit plans appears to have blinded many of their advocates to the mounting pile of evidence that they haven’t — and won’t — deliver the climate benefit they promise.
I looked at projects going back two decades and spanning the globe and pulled together findings from academic researchers in far-flung forest villages, studies published in obscure journals, foreign government reports and dense technical documents. I enlisted a satellite imagery analysis firm to see how much of the forest remained in a preservation project that started selling credits in 2013. Four years later, only half the project areas were forested.
A 2016 report found that 85% of offsets had a “low likelihood” of creating real impacts.The market for RECs is such a racket that I will save for another day. My stomach is already hurting and I can't take any more grief today.
Another global program, Joint Implementation, has a similar track record. A 2015 paper found that 75% of the credits issued were unlikely to represent real reductions, and that if countries had cut pollution on-site instead of relying on offsets, global CO₂ emissions would have been 600 million tons lower.
Almost all of the projects failed to meet a standard required for any true carbon offset called additionality. What it means is that the environmental gains are only real if the solar farms or windmills would never have been built without the credits.
Saturday, May 25, 2019
Housing dysfunction
So California SB50 is dead. (Text of SB-50 Planning and zoning: housing development: incentives)
Housing is a third rail for California politicians and we have the dysfunctional housing market to prove it.
The issue is so divisive, that Russian disinformation campaigns are being developed to divide and paralyze us. See this thread:
Don't be a hot head. Think rationally.
Where are all the workers going to live? Elsewhere is not an acceptable answer.
Workers of all income levels should be able to live close to their jobs.
This saves workers time that they can spend on themselves and their families.
This fosters resilience in the face of disasters. If awful things happen, they can still get to their jobs or home to their families.
This reduces air pollution caused by commuters.
This reduces traffic congestion caused by commuters.
This reduces the urban heat island effect because cars and road surfaces are a major contributor to localized heating.
When people use active transportation (walking and bicycling), their health improves. This saves our whole society health care costs.
If parents work near their children's schools, they can be more involved, which improves educational outcomes for all.
I can go on and on.
WE NEED TO BUILD MORE HOUSING NEAR EXISTING JOB CENTERS.
It is not fair or just to keep cramming more apartments in already-dense minority neighborhoods while other areas near jobs are zoned only for single family homes.
BTW, SB50 was killed by CA State Senator Anthony Portantino, a Democrat from La Canada Flintridge and chairman of the Senate Appropriations Committee.
You may know La Canada Flintridge (LCF) as the home of Jet Propulsion Laboratory, but did you know that it is so expensive, that practically none of the scientists and engineers that work there can afford to live there?
Did you know that Senator Portantino's constituents emit about twice as much CO2 as residents in the dense core of Los Angeles? Check out the CoolClimate Maps for the US and zoom in for Los Angeles.
A main reason why they are so wasteful is because of the low density and high cost creates a mismatch between jobs and housing. Thus, everyone has to drive long distances into and out of LCF. The Density Map makes this nauseatingly clear.
Now that I got this off my chest, I am off to bed.
Play with the Density Map. It's a fantastically information-rich data visualizer.
The CoolClimate Maps are also cool, but their maps have more modeling assumptions. Those are just best-guess averages based upon average consumption based on geographical data and income. They are generally true, but not gospel.
Play with them in conjunction with the Racial Dot Map of the US.
If you are not mad after you explore the data in these three maps, I don't know how to get through to you.
Housing is a third rail for California politicians and we have the dysfunctional housing market to prove it.
The issue is so divisive, that Russian disinformation campaigns are being developed to divide and paralyze us. See this thread:
Don't be a hot head. Think rationally.
Where are all the workers going to live? Elsewhere is not an acceptable answer.
Workers of all income levels should be able to live close to their jobs.
This saves workers time that they can spend on themselves and their families.
This fosters resilience in the face of disasters. If awful things happen, they can still get to their jobs or home to their families.
This reduces air pollution caused by commuters.
This reduces traffic congestion caused by commuters.
This reduces the urban heat island effect because cars and road surfaces are a major contributor to localized heating.
When people use active transportation (walking and bicycling), their health improves. This saves our whole society health care costs.
If parents work near their children's schools, they can be more involved, which improves educational outcomes for all.
I can go on and on.
WE NEED TO BUILD MORE HOUSING NEAR EXISTING JOB CENTERS.
It is not fair or just to keep cramming more apartments in already-dense minority neighborhoods while other areas near jobs are zoned only for single family homes.
BTW, SB50 was killed by CA State Senator Anthony Portantino, a Democrat from La Canada Flintridge and chairman of the Senate Appropriations Committee.
You may know La Canada Flintridge (LCF) as the home of Jet Propulsion Laboratory, but did you know that it is so expensive, that practically none of the scientists and engineers that work there can afford to live there?
Did you know that Senator Portantino's constituents emit about twice as much CO2 as residents in the dense core of Los Angeles? Check out the CoolClimate Maps for the US and zoom in for Los Angeles.
A main reason why they are so wasteful is because of the low density and high cost creates a mismatch between jobs and housing. Thus, everyone has to drive long distances into and out of LCF. The Density Map makes this nauseatingly clear.
Now that I got this off my chest, I am off to bed.
Play with the Density Map. It's a fantastically information-rich data visualizer.
The CoolClimate Maps are also cool, but their maps have more modeling assumptions. Those are just best-guess averages based upon average consumption based on geographical data and income. They are generally true, but not gospel.
Play with them in conjunction with the Racial Dot Map of the US.
If you are not mad after you explore the data in these three maps, I don't know how to get through to you.
Friday, May 24, 2019
Heartsick and Mad
I'm heartsick about climate change and how it is caused by rich and old people while the brunt of it is borne by poor and young people.
I know that I sound like a broken record, but we cannot stop catastrophic climate change without fundamentally changing the way we live and get around. Tinkering around the edges with electric (EV) and autonomous vehicles (AV) is simply a cynical diversionary stalling tactic.
The responsible people who are getting around in carbon-free ways are being murdered by automobile drivers and elected officials act like they are powerless to make our streets work for everyone--and not just people in two ton metal cages.
I'm heartsick about all the people killed and maimed by automobile drivers. They are not auto accidents. They are the entirely predictable outcomes of streets designed for auto drivers at the expense of everyone else and drivers who feel like shaving a few seconds is worth more than the life of another human being.
I'm heartsick that the number of deaths is growing despite every elected official pledging allegiance to Vision Zero.
The carnage is endless. See this and this in just the last month in LA.
Should Law Subsidize Driving?
The correct answer is no.
I want more money and public road space for people outside of cars and I want them now.
I know that I sound like a broken record, but we cannot stop catastrophic climate change without fundamentally changing the way we live and get around. Tinkering around the edges with electric (EV) and autonomous vehicles (AV) is simply a cynical diversionary stalling tactic.
The responsible people who are getting around in carbon-free ways are being murdered by automobile drivers and elected officials act like they are powerless to make our streets work for everyone--and not just people in two ton metal cages.
I'm heartsick about all the people killed and maimed by automobile drivers. They are not auto accidents. They are the entirely predictable outcomes of streets designed for auto drivers at the expense of everyone else and drivers who feel like shaving a few seconds is worth more than the life of another human being.
I'm heartsick that the number of deaths is growing despite every elected official pledging allegiance to Vision Zero.
The carnage is endless. See this and this in just the last month in LA.
Should Law Subsidize Driving?
The correct answer is no.
I want more money and public road space for people outside of cars and I want them now.
Labels:
Bicycling,
Bullshit,
Climate,
Law,
Los Angeles,
Safety,
Traffic,
Transportation
Monday, April 22, 2019
Earth Day Lament
This earth day, I want to talk about how the biggest impediment to having a sustainable society and planet is not technology or money, it is the narrowness of our imagination.
I sound like a broken record, but the largest contributor of CO2 emissions is transportation. Even if we completely decarbonize our electricity grid, we will still be emitting too much CO2 to prevent the planet from frying.
From today's LAT:
The big caveat is "with the right policies in place." Right now, we are incentivizing the wrong things.
South Bay employment is concentrated in the El Segundo (ES) employment center (~150,000 jobs) and Redondo Beach Spacepark, circled in blue. LAX is another huge employment center, but it's hidden by the search bar at the top.
Professionals tend to commute to ES from the beach suburbs from the south (and sometimes from the north) while service workers commute in from the east. I circled the light rail stations in yellow and the bus hub in yellow squiggles. The < 6 mile commutes to ES and Space Park would be easily biked by many if we connected the job centers to homes. Instead, we have short, disconnected bike lanes (in door zones squeezed between parked and moving cars) that go nowhere people really need to go.
People going to work and running errands need to use the arterials that we have given completely over to cars. If we just remove free car storage on public right of way (on-street parking), there would be room to put in protected bike lanes that separate bicycles from the cars.
We've done the experiment one way, with cars, and look what we happened.
We have rivers of cars stuck at red lights, taking 45 minutes to go 6-7 miles.
We have buses trapped in the automobile traffic.
We have banished bicyclists and pedestrians. Actually, we are killing bicyclists and pedestrians at alarming and increasing rates.
We have paved over acres of prime, central urban space to store cars 20% of the time.
Each car spews hot exhaust full of greenhouse gases like CO2 and water as well as smog (NOx, SOx and Ozone). Making each car electric is not going to solve the problem of gridlock, parking/storage and deaths.
Want to weep even more? Take a look a bit further south at places where people go to school and shop. I circled schools in blue. (Why are we putting schools next to freeways?)
The top circle is a Green Line (light rail) stop and the bottom yellow circle is the South Bay (bus) Transit Center. The rail stations are reasonably well connected to workplaces, but notice how poorly the bus hub is connected? It's almost like we decided that people who ride buses don't matter...
We can limit climate change to 1.5 degrees C if we halve our carbon emissions. That is doable today if we bike or walk our short trips and reduce our long trips. (We also need to eat less meat and buy fewer things to cram into our over-stuffed homes.) These are all things we can do immediately and would not be big sacrifices, if our elected officials give us safer ways to bike and walk.
So this earth day, do what you can on your own, but also *organize* and demand that our elected officials do better.
Give us a road buffet where we can choose to bike, walk, take transit or drive, with equal safety and convenience.
I sound like a broken record, but the largest contributor of CO2 emissions is transportation. Even if we completely decarbonize our electricity grid, we will still be emitting too much CO2 to prevent the planet from frying.
From today's LAT:
The tailpipes of the cars and pick-up trucks that flood California's freeways every morning and afternoon generate more than one-fourth of the greenhouse gas emissions in the state, according to air quality regulators.We actually have a tool to reduce our CO2 emissions today and not decades from now when fusion reactors or battery storage breakthroughs may happen. Consider the humble bike.
Emissions from cars outstrip all other single sources of greenhouse gases in California, including the freight and shipping industry, oil and gas production, and all the state’s commercial and residential real estate combined.
The big caveat is "with the right policies in place." Right now, we are incentivizing the wrong things.
South Bay employment is concentrated in the El Segundo (ES) employment center (~150,000 jobs) and Redondo Beach Spacepark, circled in blue. LAX is another huge employment center, but it's hidden by the search bar at the top.
Employment centers in blue, transit centers in yellow, bike infrastructure in green, car hellscapes in red. |
People going to work and running errands need to use the arterials that we have given completely over to cars. If we just remove free car storage on public right of way (on-street parking), there would be room to put in protected bike lanes that separate bicycles from the cars.
We've done the experiment one way, with cars, and look what we happened.
We have rivers of cars stuck at red lights, taking 45 minutes to go 6-7 miles.
We have buses trapped in the automobile traffic.
We have banished bicyclists and pedestrians. Actually, we are killing bicyclists and pedestrians at alarming and increasing rates.
We have paved over acres of prime, central urban space to store cars 20% of the time.
Each car spews hot exhaust full of greenhouse gases like CO2 and water as well as smog (NOx, SOx and Ozone). Making each car electric is not going to solve the problem of gridlock, parking/storage and deaths.
Want to weep even more? Take a look a bit further south at places where people go to school and shop. I circled schools in blue. (Why are we putting schools next to freeways?)
The top circle is a Green Line (light rail) stop and the bottom yellow circle is the South Bay (bus) Transit Center. The rail stations are reasonably well connected to workplaces, but notice how poorly the bus hub is connected? It's almost like we decided that people who ride buses don't matter...
Schools in blue, transit centers in yellow, bike infrastructure in green, car hellscapes in red. |
We can limit climate change to 1.5 degrees C if we halve our carbon emissions. That is doable today if we bike or walk our short trips and reduce our long trips. (We also need to eat less meat and buy fewer things to cram into our over-stuffed homes.) These are all things we can do immediately and would not be big sacrifices, if our elected officials give us safer ways to bike and walk.
So this earth day, do what you can on your own, but also *organize* and demand that our elected officials do better.
Give us a road buffet where we can choose to bike, walk, take transit or drive, with equal safety and convenience.
Labels:
Bicycling,
Climate,
Energy,
Environment,
Health,
Los Angeles,
Safety,
Sustainability,
Traffic,
Transportation,
Urbanism
Wednesday, April 10, 2019
Windsday 2019
Happy Windsday!
It's been years since we've experienced a proper jet stream-induced Windsday.
We've lived with the Ridiculously Resilient Ridge for so long, we forgot what it feels like when the jet stream dips south over us.
It seems like the satellite image overlay is no longer active at either CRWS or the Naval Research Lab links I provided earlier. Research funding scarcity and the privatization of data from public satellites was just too much to overcome.
It's been years since we've experienced a proper jet stream-induced Windsday.
Consider the jet stream, a fast-moving horizontal river of air at approximately the 300 millibar level (about 30,000 feet above sea level). Bernoulli's principle explains that, where the air is flowing fastest, the air pressure is lowest. It's a positive feedback loop because the jet stream sits over the regions of the lowest pressure and the pressure is lowest where the air is moving fastest. It's like a mountain pass that allows the air to blow through--only this pass can move and change course.Last night, I read several tweets from journalists remarking about the ripping Santa Anas. It didn't feel like a Santa Ana--too cold and not dry enough. I quickly took a look at the California Regional Weather Server Jet Stream Analysis webpage.
High pressure systems are associated with warm and sunny weather. Low pressure systems are associated with 'disturbed', cloudy and stormy weather.
Universal time/UTC/Z is 7 hours ahead of PDT so this was 23PDT 9 APR 2019. Note the peak of 136 knots right over LA in the jet stream analysis. |
It seems like the satellite image overlay is no longer active at either CRWS or the Naval Research Lab links I provided earlier. Research funding scarcity and the privatization of data from public satellites was just too much to overcome.
Labels:
California,
Los Angeles,
Meteorology,
Science,
Windsday
Tuesday, April 09, 2019
Towards a better wardrobe
Kate at the Time to Sew blog (@timetosew on IG) asked me what I think about the arguments presented by Nina Marenzi on the Wardrobe Crisis podcast. I listened to the entire 36 minute podcast just so I can hear a few minutes of scientific tidbits.
(Why are podcasts so popular? Are we being gas-lit about the popularity of podcasts the same way FB lied about the popularity of video news? Don't busy people want more info in less time?)
Nina Marenzi made some good points, but, there wasn't an opportunity for her to address the issues deeply in 36 minutes (!) while establishing rapport (talking about childhood pets) and establishing culture cred (music), etc.
Anyhoo...
In short, she said that we have a crisis of topsoil. We are in danger of using up all of the world's topsoil in 60 years unless we change the way we do things. You get no argument from me on that one.
Then we hit an uh-oh, when she segued into organic agriculture and biodynamic farming. We use labels as cognitive shorthand; organic is supposed to represent a sustainable way of farming. It's true that, on average, organic farmer tends to be kinder to the environment than conventional agriculture. But, if you have been reading my blog, you know that organic is no panacea.
One problem is that organic farming does not necessarily preserve topsoil. The opening chapters of Michael Pollan's book, The Omnivore’s Dilemma: A Natural History of Four Meals, deal with how organic lettuce at Whole Foods is grown in northern California.
The land is tilled, watered and weeds are allowed to grow. Then they plow the weeds under and repeat the process. Fewer weeds should sprout the second time. After plowing the weeds under a second time, they actually grow the lettuce.
They follow this wasteful practice in lieu of hand weeding because they simply do not have enough labor to hand weed the enormous acreage required to feed our demand for organic lettuce.
The damage wrought by that organic lettuce is enormous. They lost topsoil with each tilling. They pumped groundwater from a critically overdrafted aquifer to grow two crops of weeds and one crop of lettuce. Along the way, they used up 57 calories of fossil fuels to produce 1 calorie of arugula.
(That is not counting the energy for you to go shop for the arugula and get it home. I sound like a broken record, but the biggest change you can make is how you (and your stuff) get around. An electric car sitting in traffic is still another car in traffic. Get out of your car already.)
Read Organic Pesticides: Not An Oxymoron for an idea of what I am talking about. The problem with EWG's Dirty Dozen is that they only test for synthetic pesticides (the ones not used in organic farming.) No one is routinely testing for pesticides used in organic farming that can be hazardous to the environment, farm workers, and consumers.
Why You Shouldn't Buy Organic Based on the "Dirty Dozen" List [Updated for 2019]
A friend says that he sprays glyphosate once per growing season. It makes a big difference in his farm's yield and water use. His orchard is too big to weed manually. But the glyphosate plus manual weeding of stragglers is working for him, even though he can't sell his fruit as organic.
Did you know that in some parts of India, the chickpea borer has become such a big problem, that farmers cannot grow one of their primary sources of protein? The best hope for these farmers is to grow BT chickpeas, which are resistant to the borer. I'm not going to tell a farmer that they are better off starving than using GM technology.
That flexible approach to production that uses technology to improve efficiency while being safer for the environment, the people working in agriculture, and the consumers.
Let's get back to the podcast. Marenzi made solid points about how we should expand our market basket of fibers beyond cotton and polyester.
She said that polyester makes up 70% of the fiber in global clothing production. Cotton makes up ~23% and all other fibers make up about 7%.
She said that we should use more linen and hemp, which grow readily with little chemical input and can grow on more marginal land. One of the big problems with cotton is that it uses up topsoil and water at alarming rates. It also requires good quality land and fresh water. GMO cotton can be engineered to grow in soils and with water that contains more salts than organic cotton can tolerate. In a world with 7 billion people (and growing), we need fiber crops that don't compete with food crops for land and water.
They talked about fiber shedding in laundering and the amount of fibers that end up in the oceans and waterways. Acrylic sheds the most fibers of all. I expected cotton and natural fibers to also shed and find their way into the water. But I did not expect them to persist. After all, they are biodegradable. I thought wrong. The oceans are full of small fibers, natural and synthetic.
This makes me glad that I live in Los Angeles, where our waste water is screened, treated and micro-filtered at a minimum. Some are even nano-filtered or undergo reverse osmosis and UV treatment to make them potable again.
She mentioned the grave and irreversible damage done by cashmere production that I chronicled in The planetary cost of cashmere.
They discussed problems with viscose/rayon production. Marenzi noted that viscose/rayon isn't the problem so much as the production process. You have to soak the cellulosic fibers in strong chemicals to break up the fibers and then use more chemicals to get them to reform into fibers suitable for spinning into yarn. Wikipedia on rayon has a good summary of the processes.
They mentioned the water use in viscose/rayon production, but didn't mention that the water footprint of viscose/rayon is based on the assumption that the water used in production is released into waterways and diluted to safe levels of toxicity. That's not what really happens. No one has uses that much water to dilute the effluent. Many producers just release it into waterways and let downstream users deal with the pollution. That happens often in countries with little oversight and laws.
More responsible manufacturers recycle the chemicals and water (with high-tech equipment and applying lots of energy) in a closed loop process. Manufacturers that use closed loop processes label sell their products under the Lyocell, Tencel or Ecovero labels. Ambiance Bemberg rayon also uses a closed loop process. Please support these manufacturers as I do. They cost a little more for the consumer because they are not foisting the environmental costs to others.
Marenzi also said that 80% of organic cotton grown today is rain-fed. This is a positive development, but it's too late for the Aral Sea region or the Murray Darling River.
She also said that organic cotton is a cash crop grown in rotation with food crops by subsistence farmers in many parts of the world. I wish the higher yields and lower water requirements of GMO cleaner cotton were available to the subsistence farmers. This could happen if we made GMO seeds less costly and if we as consumers were willing to pay more for cleaner cotton. (Farmers in poor countries are only being paid more for organic cotton but we can change that.)
I'm encouraged that the Gates Foundation is investing in GMO research so that farmers in poor countries will be able to take advantage of GMO's advantages without having to pay exorbitant and unfair Monsanto prices.
Anyway, I thought the podcast was a long slog and made some good points but it was a poor investment of my time. For most people, reading is the fastest way to ingest information.
Thank-you for reading and I hope I didn't take up 36 minutes of your life.
(Why are podcasts so popular? Are we being gas-lit about the popularity of podcasts the same way FB lied about the popularity of video news? Don't busy people want more info in less time?)
Nina Marenzi made some good points, but, there wasn't an opportunity for her to address the issues deeply in 36 minutes (!) while establishing rapport (talking about childhood pets) and establishing culture cred (music), etc.
Anyhoo...
In short, she said that we have a crisis of topsoil. We are in danger of using up all of the world's topsoil in 60 years unless we change the way we do things. You get no argument from me on that one.
Then we hit an uh-oh, when she segued into organic agriculture and biodynamic farming. We use labels as cognitive shorthand; organic is supposed to represent a sustainable way of farming. It's true that, on average, organic farmer tends to be kinder to the environment than conventional agriculture. But, if you have been reading my blog, you know that organic is no panacea.
One problem is that organic farming does not necessarily preserve topsoil. The opening chapters of Michael Pollan's book, The Omnivore’s Dilemma: A Natural History of Four Meals, deal with how organic lettuce at Whole Foods is grown in northern California.
The land is tilled, watered and weeds are allowed to grow. Then they plow the weeds under and repeat the process. Fewer weeds should sprout the second time. After plowing the weeds under a second time, they actually grow the lettuce.
They follow this wasteful practice in lieu of hand weeding because they simply do not have enough labor to hand weed the enormous acreage required to feed our demand for organic lettuce.
The damage wrought by that organic lettuce is enormous. They lost topsoil with each tilling. They pumped groundwater from a critically overdrafted aquifer to grow two crops of weeds and one crop of lettuce. Along the way, they used up 57 calories of fossil fuels to produce 1 calorie of arugula.
(That is not counting the energy for you to go shop for the arugula and get it home. I sound like a broken record, but the biggest change you can make is how you (and your stuff) get around. An electric car sitting in traffic is still another car in traffic. Get out of your car already.)
Read Organic Pesticides: Not An Oxymoron for an idea of what I am talking about. The problem with EWG's Dirty Dozen is that they only test for synthetic pesticides (the ones not used in organic farming.) No one is routinely testing for pesticides used in organic farming that can be hazardous to the environment, farm workers, and consumers.
Why You Shouldn't Buy Organic Based on the "Dirty Dozen" List [Updated for 2019]
The “Dirty Dozen” list, which aims to rank the fruits with the most pesticide residue, comes from the Environmental Working Group, and they publish their methodology on the report’s website. They basically download the test results from the USDA’s Pesticide Data Program, which samples produce for pesticide residues, and come up with a ranking score for each fruit or vegetable based on six criteria relating to the number of different pesticide residues seen on produce of that type, the percentage of samples with pesticide residues, and the total amount of pesticide detected.You should read the entire well-researched article. Author Beth Skwarecki echoes the points chemist and farmer friends have made to me. It's preferable to buy from a farmer that sprays glyphosate once than from a farmer that sprays organic pesticides repeatedly. Insects can develop resistance to any pesticide, organic or synthetic. It's the repeated spraying that breeds pesticide resistance--superbugs and superweeds.
There’s a problem here. Some pesticides are drastically more toxic than others, but the EWG’s scoring system considers all pesticides to be equal, and they don’t relate the pesticide amounts to known safety standards. Two food scientists did a reality check on the EWG’s numbers from their 2010 list (which uses the same methodology as this year’s). Their analysis was published in the Journal of Toxicology.
They compared the amount of pesticides on each of the Dirty Dozen foods to the chronic reference dose, which is the maximum amount that it’s okay to have if you are eating that food every day of your life. This level, just to be safe, is one hundred times less than the amount that experimental animals were able to consume with no effects. It’s a pretty big safety margin. So how many of the Dirty Dozen exceeded this extremely conservative chronic reference dose? None:
A friend says that he sprays glyphosate once per growing season. It makes a big difference in his farm's yield and water use. His orchard is too big to weed manually. But the glyphosate plus manual weeding of stragglers is working for him, even though he can't sell his fruit as organic.
Did you know that in some parts of India, the chickpea borer has become such a big problem, that farmers cannot grow one of their primary sources of protein? The best hope for these farmers is to grow BT chickpeas, which are resistant to the borer. I'm not going to tell a farmer that they are better off starving than using GM technology.
That flexible approach to production that uses technology to improve efficiency while being safer for the environment, the people working in agriculture, and the consumers.
Let's get back to the podcast. Marenzi made solid points about how we should expand our market basket of fibers beyond cotton and polyester.
She said that polyester makes up 70% of the fiber in global clothing production. Cotton makes up ~23% and all other fibers make up about 7%.
She said that we should use more linen and hemp, which grow readily with little chemical input and can grow on more marginal land. One of the big problems with cotton is that it uses up topsoil and water at alarming rates. It also requires good quality land and fresh water. GMO cotton can be engineered to grow in soils and with water that contains more salts than organic cotton can tolerate. In a world with 7 billion people (and growing), we need fiber crops that don't compete with food crops for land and water.
They talked about fiber shedding in laundering and the amount of fibers that end up in the oceans and waterways. Acrylic sheds the most fibers of all. I expected cotton and natural fibers to also shed and find their way into the water. But I did not expect them to persist. After all, they are biodegradable. I thought wrong. The oceans are full of small fibers, natural and synthetic.
This makes me glad that I live in Los Angeles, where our waste water is screened, treated and micro-filtered at a minimum. Some are even nano-filtered or undergo reverse osmosis and UV treatment to make them potable again.
She mentioned the grave and irreversible damage done by cashmere production that I chronicled in The planetary cost of cashmere.
They discussed problems with viscose/rayon production. Marenzi noted that viscose/rayon isn't the problem so much as the production process. You have to soak the cellulosic fibers in strong chemicals to break up the fibers and then use more chemicals to get them to reform into fibers suitable for spinning into yarn. Wikipedia on rayon has a good summary of the processes.
They mentioned the water use in viscose/rayon production, but didn't mention that the water footprint of viscose/rayon is based on the assumption that the water used in production is released into waterways and diluted to safe levels of toxicity. That's not what really happens. No one has uses that much water to dilute the effluent. Many producers just release it into waterways and let downstream users deal with the pollution. That happens often in countries with little oversight and laws.
More responsible manufacturers recycle the chemicals and water (with high-tech equipment and applying lots of energy) in a closed loop process. Manufacturers that use closed loop processes label sell their products under the Lyocell, Tencel or Ecovero labels. Ambiance Bemberg rayon also uses a closed loop process. Please support these manufacturers as I do. They cost a little more for the consumer because they are not foisting the environmental costs to others.
Marenzi also said that 80% of organic cotton grown today is rain-fed. This is a positive development, but it's too late for the Aral Sea region or the Murray Darling River.
The Aral Sea in 2000 on the left and 2014 on the right. Photograph: Atlas Photo Archive/NASA |
I'm encouraged that the Gates Foundation is investing in GMO research so that farmers in poor countries will be able to take advantage of GMO's advantages without having to pay exorbitant and unfair Monsanto prices.
Anyway, I thought the podcast was a long slog and made some good points but it was a poor investment of my time. For most people, reading is the fastest way to ingest information.
Thank-you for reading and I hope I didn't take up 36 minutes of your life.
Labels:
Climate,
Environment,
Environmental Hazards,
Food,
Sewing,
Sustainability,
Sustainable Sewing,
Technology,
Water
Sunday, April 07, 2019
Climate Change, Sharknado and the real danger under the Beach Cities
I have a soft spot for Sharknado the movie. It's just pure, campy fun, especially for meteorologists from Los Angeles.* I also like that it highlights the relationship between our storm drains and the ocean.
Los Angeles is not as threatened by rising sea levels as other cities because most of the city lies well above projected sea level rise. We're also mostly safe from tsunamis (except at a few low-lying spots.)
The real danger is underground, from seawater intrusion.
The LA region gets about one third of our water from aquifers fed by rain that falls in the basin and is squeezed out of the sky by the mountain ranges that surround the basin.
The aquifer is subject to seawater intrusion along the coast and in estuaries further inland.
In the wild west days, anyone could sink a well and pump groundwater in the LA basin. This drew the sea water ever inland. Furthermore, some parts of LA subsided, as the Central Valley is sinking today, from groundwater over pumping. This was unsustainable.
By the 1960s, the LA region became an adjudicated basin; people agreed who got to pump groundwater and how much. All pumping has to be publicly logged.
LA also created a ring of barrier injection wells whereby fresh water is pumped into the ground to push the underground toe of seawater back out towards the sea.
We used to do it with imported water from the Colorado River or the California Aqueduct. Now, we do it with sewage water recycled to drinking water quality at great expense in energy and dollars. This protects our freshwater supply. I had previously thought the main danger as sea level rises is that we will need more to put more (scarce/expensive) freshwater into the aquifer to push back the sea.
The Sea Beneath Us brought my attention to a very real horror story:
In the Boulder, Colorado floods of 2013, homes in low-lying places above clay soils had water come up through their foundations and their drains. The rainwater could not continue to flow downhill on the surface or percolate down through the soil. If there is enough water and hydrologic pressure, the water will go up. It came up for days and even weeks as the water flowed downhill underground and got trapped.
Heaven or High Water explains a similar phenomena, Miami's "Sunny Day Flooding." Building sea walls against rising seas won't help when the water is moving underground.
In the sequel, an atmospheric river strikes the region with intense rain and wind. Wind-driven waves pound the shore and push the seawater inland both on the surface and underground. Suppose we're successful in capturing much of the rain in the aquifer instead of letting it flood our streets and flowing out to sea.
The rain water flows slowly downhill underground until it reaches an impenetrable salty layer. Then the horror movie begins:
People who live along the beaches in California are similarly vulnerable. Instead of building sea walls like Holland or excavating clay soils like Colorado, we need to push back the underground toe of seawater with as much fresh water underground as we can.
We've built a largely impermeable city where the rainwater flows along the surface and out towards the sea. Low-lying areas already flood in the current scenario. Moreover, rain water on the surface does nothing to help push the seawater out.
The more rainwater we can get to soak into the ground, the less (expensive!) water we need to pump into the injection wells. That will save us all money. It will also prevent rainwater from flushing out into the sea, laden with dog poop and motor oil.
Collecting rainwater and letting it soak into the ground should be a win-win for both the people who live along the shore and the millions of people who rely on the aquifer. It would also be a win for the marine life that would appreciate us not dumping trash, bacteria and pollution into the bay.
Recognizing that this is both a local and regional problem, the state had committed $3.1M to help our local governments deal with this local pollution hotspot:
Here's a USGS map from 1963 with elevations of the area. The greenbelt follows the old streetcar right of way a couple of blocks from the beach, north of Herondo (the straight street ending at the north side of the harbor and the border of the cities of Hermosa Beach and Redondo Beach). The map shows the elevation of the greenbelt and park area as 30', but sea level has risen since then.
Notice that the park and greenbelt sit on top of former oil wells. Imagine what interesting hydrocarbons would percolate up with the groundwater if it can't flow downwards due to encroaching seawater.
The Hermosa Beach staff plan would have screened the trash out of the water from the storm drain, sent the "first flush" of rainwater, which tends to have the heaviest pollutant and bacterial load, to the sewage plant; filtered the remaining rainwater, and then spread it under the greenbelt in a network of pipes.
The entire system would have been built underground and been invisible except for a few maintenance access points.
The rainwater would have served the dual purpose of pushing back against the seawater and watering the landscaping in the greenbelt. This would have saved the city money in landscaping water and the neighborhood from the horror of watching water and a chemical and bacteria soup percolate up through the ground.
Roughly 100% of the current vegetation is non-native invasive species such as ice plant, mustard, and (highly flammable!) eucalyptus trees. The abandoned plan would have replaced the vegetation with California natives or drought-tolerant non-invasive species that required little or no additional water.
If the state and a coalition of city governments were willing to pay millions to make your home safer and give you free relandscaping with water, you'd think the neighborhood would support it.
You'd think wrong. In fact, the opposite happened.
On March 26, 2019, the Hermosa Beach city council caved. They cancelled the entire project, jeopardizing the state funding and trashing years of planning. HB doesn't want the infiltration project anywhere within their city boundaries.
By saying no to infiltration projects, they will continue to use more landscaping water in the short-term. In the longer-term, HB will have to find the money to build a network of injection wells and pay for the water to put in them on their own.
Redondo Beach is looking at some sites a few blocks away where the project can be built. Redondo Beach has a history of welcoming infiltration projects such as the NRB library and the one next to Aviation Blvd. This would mean more time spent planning another project from the ground up and possibly the loss of state matching funds.
Construction is always painful, but the result will be a cleaner bay and healthier landscape. It will also protect the neighborhood near the beach as much as possible from sea level rise. We really need this project.
* ~20 years ago, I went to a mixer for first time attendees of the American Meteorological Society's annual meeting. Our names and locations were printed on our badges. Mine said Los Angeles. All evening long, I heard,
"Florida? Hurricanes! Cool!"
"Oklahoma? Tornadoes! Awesome!"
"Los Angeles? I'm so sorry!"
Los Angeles is not as threatened by rising sea levels as other cities because most of the city lies well above projected sea level rise. We're also mostly safe from tsunamis (except at a few low-lying spots.)
The real danger is underground, from seawater intrusion.
The LA region gets about one third of our water from aquifers fed by rain that falls in the basin and is squeezed out of the sky by the mountain ranges that surround the basin.
Hydrogeologic map of LA |
Seawater intrusion happens underground |
By the 1960s, the LA region became an adjudicated basin; people agreed who got to pump groundwater and how much. All pumping has to be publicly logged.
LA also created a ring of barrier injection wells whereby fresh water is pumped into the ground to push the underground toe of seawater back out towards the sea.
Pumping groundwater out draws seawater inland. Injecting freshwater along the coast pushes the seawater back towards the sea. |
The Sea Beneath Us brought my attention to a very real horror story:
In a nutshell, as a warming climate raises sea levels, the sea won’t only move inland, flooding low-lying land near the shore; it may also push water up from beneath our feet. That’s because for those of us living near the shore, a sea lurks in the ground—a saltwater water table. On top of that salt water floats a layer of lighter fresh water. As the salt water rises with rising seas, [UC Berkeley professor Kristina] Hill and others think, it will push the fresh water upward. In low-lying areas, that water may emerge from the ground.Most of us (including me, until I read this article) don't pay much attention to the small difference between the specific gravity (weight) of fresh vs seawater. That 2.5-4% difference in density turns out to matter quite a bit. If freshwater cannot percolate down through the heavier seawater, then it has no where to go but up.
The result, Hill explained, will be that in places like Oakland, flooding will occur not just at the shoreline, but inland in areas once considered safe from sea level rise, including the Oakland Coliseum and Jones Avenue, where Hill and her students now stood, more than a mile from San Leandro Bay. In fact, she added, rising groundwater menaces nearly the entire band of low-lying land around San Francisco Bay, as well as many other coastal parts of the U.S.
In the Boulder, Colorado floods of 2013, homes in low-lying places above clay soils had water come up through their foundations and their drains. The rainwater could not continue to flow downhill on the surface or percolate down through the soil. If there is enough water and hydrologic pressure, the water will go up. It came up for days and even weeks as the water flowed downhill underground and got trapped.
Heaven or High Water explains a similar phenomena, Miami's "Sunny Day Flooding." Building sea walls against rising seas won't help when the water is moving underground.
Since Miami is built on limestone, which soaks up water like a sponge, walls are not very useful. In Miami, sea water will just go under a wall, like a salty ghost. It will come up through the pipes and seep up around the manholes. It will soak into the sand and find its way into caves and get under the water table and push the ground water up. So while walls might keep the clogs of Holland dry, they cannot offer similar protection to the stilettos of Miami Beach.The horror story gets even worse. The seawater doesn't just retreat with the tide, it leaves salt in the soil. Rewet it with rainwater from above and you've made more salt water. Pour more rainwater on top, and the water has no where to flow underground. It has to come up to the surface.
In the sequel, an atmospheric river strikes the region with intense rain and wind. Wind-driven waves pound the shore and push the seawater inland both on the surface and underground. Suppose we're successful in capturing much of the rain in the aquifer instead of letting it flood our streets and flowing out to sea.
The rain water flows slowly downhill underground until it reaches an impenetrable salty layer. Then the horror movie begins:
In East Oakland, on a residential street in front of a small park, Kristina Hill stopped and got out of her vehicle. She walked to the center of the street as a gaggle of graduate students emerged from their cars and gathered around her. It was midday, early September, the bright, hot sun directly overhead. Hill, a professor of urban and environmental design at UC Berkeley, had chosen the spot because when it rains heavily, water gushes up from storm drains here, forming filthy brown ponds. “That will happen more and more,” Hill said. Then she proceeded to describe a peculiar, almost apocalyptic future.Residents of Boulder, Colorado lived this nightmare. To solve the problem, cities dug through the clay layers to give water a way to flow down that did not inundate homes and infrastructure from above or below. Years later, those homes still suffer with elevated levels of bacteria and mold in their walls and foundations.
Water will leach inside homes, she said, through basement cracks. Toilets may become chronically backed up. Raw sewage may seep through manholes. Brackish water will corrode sewer and water pipes and inundate building foundations. And most hazardous of all, water percolating upward may flow through contaminants buried in the soil, spreading them underground and eventually releasing them into people’s homes. The coup de grace will be the earthquakes, which, when they strike, may liquefy the entire toxic mess, pushing it toward the surface.
People who live along the beaches in California are similarly vulnerable. Instead of building sea walls like Holland or excavating clay soils like Colorado, we need to push back the underground toe of seawater with as much fresh water underground as we can.
We've built a largely impermeable city where the rainwater flows along the surface and out towards the sea. Low-lying areas already flood in the current scenario. Moreover, rain water on the surface does nothing to help push the seawater out.
The more rainwater we can get to soak into the ground, the less (expensive!) water we need to pump into the injection wells. That will save us all money. It will also prevent rainwater from flushing out into the sea, laden with dog poop and motor oil.
Collecting rainwater and letting it soak into the ground should be a win-win for both the people who live along the shore and the millions of people who rely on the aquifer. It would also be a win for the marine life that would appreciate us not dumping trash, bacteria and pollution into the bay.
Recognizing that this is both a local and regional problem, the state had committed $3.1M to help our local governments deal with this local pollution hotspot:
The Herondo Drain outfall is the largest storm drain in the South Bay Beach Cities and typically receives an “F” grade during rain events on the Heal the Bay Beach Report Card due to high bacteria levels, resulting in beach closures.Here's the map of the watershed and storm drain system that feeds into the troubled storm drain.
The Hermosa Beach Greenbelt Infiltration Project is the highest priority project identified in the Beach Cities Enhanced Watershed Management Program (EWMP). The project will capture and infiltrate storm water runoff that otherwise flows through the Herondo Drain into Santa Monica Bay. Water quality grades for the Herondo Storm Drain are expected to improve to an “A” grade as a result of the project.
The proposed location for the project is under the greenbelt between Herondo and Second Street. When complete, the project will be contained completely underground and will include the installation of California-friendly plant habitat along the greenbelt.
A map of the various South Bay sewers that feed into the Herondo venue drain, which lets out at Hermosa’s southern border. Rendering by Geosyntec |
1963 USGS map of the area with elevation contours and benchmarks. |
The Hermosa Beach staff plan would have screened the trash out of the water from the storm drain, sent the "first flush" of rainwater, which tends to have the heaviest pollutant and bacterial load, to the sewage plant; filtered the remaining rainwater, and then spread it under the greenbelt in a network of pipes.
The entire system would have been built underground and been invisible except for a few maintenance access points.
The rainwater would have served the dual purpose of pushing back against the seawater and watering the landscaping in the greenbelt. This would have saved the city money in landscaping water and the neighborhood from the horror of watching water and a chemical and bacteria soup percolate up through the ground.
Roughly 100% of the current vegetation is non-native invasive species such as ice plant, mustard, and (highly flammable!) eucalyptus trees. The abandoned plan would have replaced the vegetation with California natives or drought-tolerant non-invasive species that required little or no additional water.
A peaceful place to jog and walk, but think how much nicer it would look with native plants. Can you see the yellow mustard blooming amidst the ice plant? The invasive and flammable eucalyptus tree? |
There is even some turf grass if you are playing environmental faux pas bingo. |
If the state and a coalition of city governments were willing to pay millions to make your home safer and give you free relandscaping with water, you'd think the neighborhood would support it.
You'd think wrong. In fact, the opposite happened.
“It looks like we're heading in the right direction to try to get everybody working together rather than having two separate groups to put as much pressure as we can on the City Council to do the right thing, to get it out of the residential area,” said Ira Ellman, who along with Jessica Guheen and Gina DeRosa, facilitated the Sunday meeting.Check out this USGS geologic map of the area. Not only was the neighborhood built on top of the site of former oil wells, but it's built on Qds=loose dune and drift sand. Yup, those homes you see adjacent to the green belt in the photos above sit on loose sand and they claim this infiltration project will cause ground liquefaction. The horse is already out of the barn on that one.
“It's literally in my backyard,” said DeRosa, about South Park. “But there are more big picture concerns.”
“The more I learn about this, the more I honestly think this is not the right project for Hermosa Beach,” said Guheen, who helped spearhead a 10-year renovation of South Park.
At the study session, the consensus from the crowd was that the “project is important, but the location is wrong.”
Concerns included the removal of a third of the trees on the greenbelt; liquefaction; moving utilities that line the greenbelt; pollutants in the soil; street closures and traffic during construction; odor and noise coming from the system after completed; structural integrity of homes; as well as lawsuits on other projects against Tetra Tech, the project contractor.
On March 26, 2019, the Hermosa Beach city council caved. They cancelled the entire project, jeopardizing the state funding and trashing years of planning. HB doesn't want the infiltration project anywhere within their city boundaries.
By saying no to infiltration projects, they will continue to use more landscaping water in the short-term. In the longer-term, HB will have to find the money to build a network of injection wells and pay for the water to put in them on their own.
Redondo Beach is looking at some sites a few blocks away where the project can be built. Redondo Beach has a history of welcoming infiltration projects such as the NRB library and the one next to Aviation Blvd. This would mean more time spent planning another project from the ground up and possibly the loss of state matching funds.
Construction is always painful, but the result will be a cleaner bay and healthier landscape. It will also protect the neighborhood near the beach as much as possible from sea level rise. We really need this project.
* ~20 years ago, I went to a mixer for first time attendees of the American Meteorological Society's annual meeting. Our names and locations were printed on our badges. Mine said Los Angeles. All evening long, I heard,
"Florida? Hurricanes! Cool!"
"Oklahoma? Tornadoes! Awesome!"
"Los Angeles? I'm so sorry!"
Labels:
Climate,
Environment,
Environmental Hazards,
Infrastructure,
Los Angeles,
Pollution,
Science,
Water
Subscribe to:
Posts (Atom)