Monday, April 22, 2019

Earth Day Lament

This earth day, I want to talk about how the biggest impediment to having a sustainable society and planet is not technology or money, it is the narrowness of our imagination.

I sound like a broken record, but the largest contributor of CO2 emissions is transportation.  Even if we completely decarbonize our electricity grid, we will still be emitting too much CO2 to prevent the planet from frying.


From today's LAT:
The tailpipes of the cars and pick-up trucks that flood California's freeways every morning and afternoon generate more than one-fourth of the greenhouse gas emissions in the state, according to air quality regulators.

Emissions from cars outstrip all other single sources of greenhouse gases in California, including the freight and shipping industry, oil and gas production, and all the state’s commercial and residential real estate combined.
We actually have a tool to reduce our CO2 emissions today and not decades from now when fusion reactors or battery storage breakthroughs may happen.  Consider the humble bike.

The big caveat is "with the right policies in place." Right now, we are incentivizing the wrong things.

South Bay employment is concentrated in the El Segundo (ES) employment center (~150,000 jobs) and Redondo Beach Spacepark, circled in blue.  LAX is another huge employment center, but it's hidden by the search bar at the top.
Employment centers in blue, transit centers in yellow, bike infrastructure in green, car hellscapes in red.
Professionals tend to commute to ES from the beach suburbs from the south (and sometimes from the north) while service workers commute in from the east.  I circled the light rail stations in yellow and the bus hub in yellow squiggles.  The < 6 mile commutes to ES and Space Park would be easily biked by many if we connected the job centers to homes.  Instead, we have short, disconnected bike lanes (in door zones squeezed between parked and moving cars) that go nowhere people really need to go.

People going to work and running errands need to use the arterials that we have given completely over to cars.  If we just remove free car storage on public right of way (on-street parking), there would be room to put in protected bike lanes that separate bicycles from the cars.

We've done the experiment one way, with cars, and look what we happened.

We have rivers of cars stuck at red lights, taking 45 minutes to go 6-7 miles.

We have buses trapped in the automobile traffic.

We have banished bicyclists and pedestrians.  Actually, we are killing bicyclists and pedestrians at alarming and increasing rates.

We have paved over acres of prime, central urban space to store cars 20% of the time.

Each car spews hot exhaust full of greenhouse gases like CO2 and water as well as smog (NOx, SOx and Ozone).  Making each car electric is not going to solve the problem of gridlock, parking/storage and deaths.

Want to weep even more? Take a look a bit further south at places where people go to school and shop.  I circled schools in blue.  (Why are we putting schools next to freeways?)

The top circle is a Green Line (light rail) stop and the bottom yellow circle is the South Bay (bus) Transit Center.  The rail stations are reasonably well connected to workplaces, but notice how poorly the bus hub is connected?  It's almost like we decided that people who ride buses don't matter...

Schools in blue, transit centers in yellow, bike infrastructure in green, car hellscapes in red.

We can limit climate change to 1.5 degrees C if we halve our carbon emissions.  That is doable today if we bike or walk our short trips and reduce our long trips.  (We also need to eat less meat and buy fewer things to cram into our over-stuffed homes.)  These are all things we can do immediately and would not be big sacrifices, if our elected officials give us safer ways to bike and walk.

So this earth day, do what you can on your own, but also *organize* and demand that our elected officials do better.

Give us a road buffet where we can choose to bike, walk, take transit or drive, with equal safety and convenience.

Wednesday, April 10, 2019

Windsday 2019

Happy Windsday!

It's been years since we've experienced a proper jet stream-induced Windsday.
Consider the jet stream, a fast-moving horizontal river of air at approximately the 300 millibar level (about 30,000 feet above sea level). Bernoulli's principle explains that, where the air is flowing fastest, the air pressure is lowest. It's a positive feedback loop because the jet stream sits over the regions of the lowest pressure and the pressure is lowest where the air is moving fastest. It's like a mountain pass that allows the air to blow through--only this pass can move and change course.

High pressure systems are associated with warm and sunny weather. Low pressure systems are associated with 'disturbed', cloudy and stormy weather.
Last night, I read several tweets from journalists remarking about the ripping Santa Anas. It didn't feel like a Santa Ana--too cold and not dry enough. I quickly took a look at the California Regional Weather Server Jet Stream Analysis webpage.

Universal time/UTC/Z is 7 hours ahead of PDT so this was 23PDT 9 APR 2019.  Note the peak of 136 knots right over LA in the jet stream analysis.
We've lived with the Ridiculously Resilient Ridge for so long, we forgot what it feels like when the jet stream dips south over us.

It seems like the satellite image overlay is no longer active at either CRWS or the Naval Research Lab links I provided earlier.  Research funding scarcity and the privatization of data from public satellites was just too much to overcome.

Tuesday, April 09, 2019

Towards a better wardrobe

Kate at the Time to Sew blog (@timetosew on IG) asked me what I think about the arguments presented by Nina Marenzi on the Wardrobe Crisis podcast.  I listened to the entire 36 minute podcast just so I can hear a few minutes of scientific tidbits.

(Why are podcasts so popular?  Are we being gas-lit about the popularity of podcasts the same way FB lied about the popularity of video news?  Don't busy people want more info in less time?)

Nina Marenzi made some good points, but, there wasn't an opportunity for her to address the issues deeply in 36 minutes (!) while establishing rapport (talking about childhood pets) and establishing culture cred (music), etc.

Anyhoo...

In short, she said that we have a crisis of topsoil.  We are in danger of using up all of the world's topsoil in 60 years unless we change the way we do things.  You get no argument from me on that one.

Then we hit an uh-oh, when she segued into organic agriculture and biodynamic farming.  We use labels as cognitive shorthand; organic is supposed to represent a sustainable way of farming.  It's true that, on average, organic farmer tends to be kinder to the environment than conventional agriculture.  But, if you have been reading my blog, you know that organic is no panacea.

One problem is that organic farming does not necessarily preserve topsoil.  The opening chapters of Michael Pollan's book, The Omnivore’s Dilemma: A Natural History of Four Meals, deal with how organic lettuce at Whole Foods is grown in northern California.

 The land is tilled, watered and weeds  are allowed to grow. Then they plow the weeds under and repeat the process. Fewer weeds should sprout the second time.  After plowing the weeds under a second time, they actually grow the lettuce.

They follow this wasteful practice in lieu of hand weeding because they simply do not have enough labor to hand weed the enormous acreage required to feed our demand for organic lettuce.

The damage wrought by that organic lettuce is enormous. They lost topsoil with each tilling. They pumped groundwater from a critically overdrafted aquifer to grow two crops of weeds and one crop of lettuce. Along the way, they used up 57 calories of fossil fuels to produce 1 calorie of arugula.

(That is not counting the energy for you to go shop for the arugula and get it home.  I sound like a broken record, but the biggest change you can make is how you (and your stuff) get around.  An electric car sitting in traffic is still another car in traffic.  Get out of your car already.)

Read Organic Pesticides: Not An Oxymoron for an idea of what I am talking about. The problem with EWG's Dirty Dozen is that they only test for synthetic pesticides (the ones not used in organic farming.)  No one is routinely testing for pesticides used in organic farming that can be hazardous to the environment, farm workers, and consumers.

Why You Shouldn't Buy Organic Based on the "Dirty Dozen" List [Updated for 2019]
The “Dirty Dozen” list, which aims to rank the fruits with the most pesticide residue, comes from the Environmental Working Group, and they publish their methodology on the report’s website. They basically download the test results from the USDA’s Pesticide Data Program, which samples produce for pesticide residues, and come up with a ranking score for each fruit or vegetable based on six criteria relating to the number of different pesticide residues seen on produce of that type, the percentage of samples with pesticide residues, and the total amount of pesticide detected.

There’s a problem here. Some pesticides are drastically more toxic than others, but the EWG’s scoring system considers all pesticides to be equal, and they don’t relate the pesticide amounts to known safety standards. Two food scientists did a reality check on the EWG’s numbers from their 2010 list (which uses the same methodology as this year’s). Their analysis was published in the Journal of Toxicology.

They compared the amount of pesticides on each of the Dirty Dozen foods to the chronic reference dose, which is the maximum amount that it’s okay to have if you are eating that food every day of your life. This level, just to be safe, is one hundred times less than the amount that experimental animals were able to consume with no effects. It’s a pretty big safety margin. So how many of the Dirty Dozen exceeded this extremely conservative chronic reference dose? None:
You should read the entire well-researched article.  Author Beth Skwarecki echoes the points chemist and farmer friends have made to me.  It's preferable to buy from a farmer that sprays glyphosate once than from a farmer that sprays organic pesticides repeatedly.  Insects can develop resistance to any pesticide, organic or synthetic.  It's the repeated spraying that breeds pesticide resistance--superbugs and superweeds.

A friend says that he sprays glyphosate once per growing season.  It makes a big difference in his farm's yield and water use.  His orchard is too big to weed manually.  But the glyphosate plus manual weeding of stragglers is working for him, even though he can't sell his fruit as organic.

Did you know that in some parts of India, the chickpea borer has become such a big problem, that farmers cannot grow one of their primary sources of protein?  The best hope for these farmers is to grow BT chickpeas, which are resistant to the borer.  I'm not going to tell a farmer that they are better off starving than using GM technology.

That flexible approach to production that uses technology to improve efficiency while being safer for the environment, the people working in agriculture, and the consumers.

Let's get back to the podcast.  Marenzi made solid points about how we should expand our market basket of fibers beyond cotton and polyester.

She said that polyester makes up 70% of the fiber in global clothing production.  Cotton makes up ~23% and all other fibers make up about 7%.

She said that we should use more linen and hemp, which grow readily with little chemical input and can grow on more marginal land.  One of the big problems with cotton is that it uses up topsoil and water at alarming rates.  It also requires good quality land and fresh water.  GMO cotton can be engineered to grow in soils and with water that contains more salts than organic cotton can tolerate.  In a world with 7 billion people (and growing), we need fiber crops that don't compete with food crops for land and water.

They talked about fiber shedding in laundering and the amount of fibers that end up in the oceans and waterways.  Acrylic sheds the most fibers of all.  I expected cotton and natural fibers to also shed and find their way into the water.  But I did not expect them to persist.  After all, they are biodegradable.  I thought wrong.  The oceans are full of small fibers, natural and synthetic.

This makes me glad that I live in Los Angeles, where our waste water is screened, treated and micro-filtered at a minimum.  Some are even nano-filtered or undergo reverse osmosis and UV treatment to make them potable again.

She mentioned the grave and irreversible damage done by cashmere production that I chronicled in The planetary cost of cashmere.

They discussed problems with viscose/rayon production.  Marenzi noted that viscose/rayon isn't the problem so much as the production process.  You have to soak the cellulosic fibers in strong chemicals to break up the fibers and then use more chemicals to get them to reform into fibers suitable for spinning into yarn.  Wikipedia on rayon has a good summary of the processes.

They mentioned the water use in viscose/rayon production, but didn't mention that the water footprint of viscose/rayon is based on the assumption that the water used in production is released into waterways and diluted to safe levels of toxicity.  That's not what really happens.  No one has uses that much water to dilute the effluent.  Many producers just release it into waterways and let downstream users deal with the pollution.  That happens often in countries with little oversight and laws.

More responsible manufacturers recycle the chemicals and water (with high-tech equipment and applying lots of energy) in a closed loop process.  Manufacturers that use closed loop processes label sell their products under the Lyocell, Tencel or Ecovero labels.  Ambiance Bemberg rayon also uses a closed loop process.  Please support these manufacturers as I do.  They cost a little more for the consumer because they are not foisting the environmental costs to others.

Marenzi also said that 80% of organic cotton grown today is rain-fed.  This is a positive development, but it's too late for the Aral Sea region or the Murray Darling River.
The Aral Sea in 2000 on the left and 2014 on the right. Photograph: Atlas Photo Archive/NASA
She also said that organic cotton is a cash crop grown in rotation with food crops by subsistence farmers in many parts of the world.  I wish the higher yields and lower water requirements of GMO cleaner cotton were available to the subsistence farmers.  This could happen if we made GMO seeds less costly and if we as consumers were willing to pay more for cleaner cotton.  (Farmers in poor countries are only being paid more for organic cotton but we can change that.)

I'm encouraged that the Gates Foundation is investing in GMO research so that farmers in poor countries will be able to take advantage of GMO's advantages without having to pay exorbitant and unfair Monsanto prices.

Anyway, I thought the podcast was a long slog and made some good points but it was a poor investment of my time.  For most people, reading is the fastest way to ingest information.

Thank-you for reading and I hope I didn't take up 36 minutes of your life.

Sunday, April 07, 2019

Climate Change, Sharknado and the real danger under the Beach Cities

I have a soft spot for Sharknado the movie.  It's just pure, campy fun, especially for meteorologists from Los Angeles.*  I also like that it highlights the relationship between our storm drains and the ocean.

Los Angeles is not as threatened by rising sea levels as other cities because most of the city lies well above projected sea level rise.  We're also mostly safe from tsunamis (except at a few low-lying spots.)

The real danger is underground, from seawater intrusion.

The LA region gets about one third of our water from aquifers fed by rain that falls in the basin and is squeezed out of the sky by the mountain ranges that surround the basin.

Hydrogeologic map of LA
The aquifer is subject to seawater intrusion along the coast and in estuaries further inland.

Seawater intrusion happens underground
In the wild west days, anyone could sink a well and pump groundwater in the LA basin.  This drew the sea water ever inland.  Furthermore, some parts of LA subsided, as the Central Valley is sinking today, from groundwater over pumping.  This was unsustainable.

By the 1960s, the LA region became an adjudicated basin; people agreed who got to pump groundwater and how much.  All pumping has to be publicly logged.

LA also created a ring of barrier injection wells whereby fresh water is pumped into the ground to push the underground toe of seawater back out towards the sea.

Pumping groundwater out draws seawater inland.  Injecting freshwater along the coast pushes the seawater back towards the sea.
We used to do it with imported water from the Colorado River or the California Aqueduct.  Now, we do it with sewage water recycled to drinking water quality at great expense in energy and dollars.  This protects our freshwater supply.  I had previously thought the main danger as sea level rises is that we will need more to put more (scarce/expensive) freshwater into the aquifer to push back the sea.

The Sea Beneath Us brought my attention to a very real horror story:
In a nutshell, as a warming climate raises sea levels, the sea won’t only move inland, flooding low-lying land near the shore; it may also push water up from beneath our feet. That’s because for those of us living near the shore, a sea lurks in the ground—a saltwater water table. On top of that salt water floats a layer of lighter fresh water. As the salt water rises with rising seas, [UC Berkeley professor Kristina] Hill and others think, it will push the fresh water upward. In low-lying areas, that water may emerge from the ground.

The result, Hill explained, will be that in places like Oakland, flooding will occur not just at the shoreline, but inland in areas once considered safe from sea level rise, including the Oakland Coliseum and Jones Avenue, where Hill and her students now stood, more than a mile from San Leandro Bay. In fact, she added, rising groundwater menaces nearly the entire band of low-lying land around San Francisco Bay, as well as many other coastal parts of the U.S.
Most of us (including me, until I read this article) don't pay much attention to the small difference between the specific gravity (weight) of fresh vs seawater.  That 2.5-4% difference in density turns out to matter quite a bit.  If freshwater cannot percolate down through the heavier seawater, then it has no where to go but up.

In the Boulder, Colorado floods of 2013, homes in low-lying places above clay soils had water come up through their foundations and their drains.  The rainwater could not continue to flow downhill on the surface or percolate down through the soil.  If there is enough water and hydrologic pressure, the water will go up.  It came up for days and even weeks as the water flowed downhill underground and got trapped.

Heaven or High Water explains a similar phenomena, Miami's "Sunny Day Flooding."  Building sea walls against rising seas won't help when the water is moving underground.
Since Miami is built on limestone, which soaks up water like a sponge, walls are not very useful. In Miami, sea water will just go under a wall, like a salty ghost. It will come up through the pipes and seep up around the manholes. It will soak into the sand and find its way into caves and get under the water table and push the ground water up. So while walls might keep the clogs of Holland dry, they cannot offer similar protection to the stilettos of Miami Beach.
The horror story gets even worse.  The seawater doesn't just retreat with the tide, it leaves salt in the soil.  Rewet it with rainwater from above and you've made more salt water.  Pour more rainwater on top, and the water has no where to flow underground. It has to come up to the surface.

In the sequel, an atmospheric river strikes the region with intense rain and wind.  Wind-driven waves pound the shore and push the seawater inland both on the surface and underground.  Suppose we're successful in capturing much of the rain in the aquifer instead of letting it flood our streets and flowing out to sea.

The rain water flows slowly downhill underground until it reaches an impenetrable salty layer.  Then the horror movie begins:
In East Oakland, on a residential street in front of a small park, Kristina Hill stopped and got out of her vehicle. She walked to the center of the street as a gaggle of graduate students emerged from their cars and gathered around her. It was midday, early September, the bright, hot sun directly overhead. Hill, a professor of urban and environmental design at UC Berkeley, had chosen the spot because when it rains heavily, water gushes up from storm drains here, forming filthy brown ponds. “That will happen more and more,” Hill said. Then she proceeded to describe a peculiar, almost apocalyptic future.

Water will leach inside homes, she said, through basement cracks. Toilets may become chronically backed up. Raw sewage may seep through manholes. Brackish water will corrode sewer and water pipes and inundate building foundations. And most hazardous of all, water percolating upward may flow through contaminants buried in the soil, spreading them underground and eventually releasing them into people’s homes. The coup de grace will be the earthquakes, which, when they strike, may liquefy the entire toxic mess, pushing it toward the surface.
Residents of Boulder, Colorado lived this nightmare.  To solve the problem, cities dug through the clay layers to give water a way to flow down that did not inundate homes and infrastructure from above or below.  Years later, those homes still suffer with elevated levels of bacteria and mold in their walls and foundations.

People who live along the beaches in California are similarly vulnerable.  Instead of building sea walls like Holland or excavating clay soils like Colorado, we need to push back the underground toe of seawater with as much fresh water underground as we can.

We've built a largely impermeable city where the rainwater flows along the surface and out towards the sea.  Low-lying areas already flood in the current scenario.  Moreover, rain water on the surface does nothing to help push the seawater out.

The more rainwater we can get to soak into the ground, the less (expensive!) water we need to pump into the injection wells.  That will save us all money. It will also prevent rainwater from flushing out into the sea, laden with dog poop and motor oil.

Collecting rainwater and letting it soak into the ground should be a win-win for both the people who live along the shore and the millions of people who rely on the aquifer.  It would also be a win for the marine life that would appreciate us not dumping trash, bacteria and pollution into the bay.

Recognizing that this is both a local and regional problem, the state had committed $3.1M to help our local governments deal with this local pollution hotspot:
The Herondo Drain outfall is the largest storm drain in the South Bay Beach Cities and typically receives an “F” grade during rain events on the Heal the Bay Beach Report Card due to high bacteria levels, resulting in beach closures.

The Hermosa Beach Greenbelt Infiltration Project is the highest priority project identified in the Beach Cities Enhanced Watershed Management Program (EWMP). The project will capture and infiltrate storm water runoff that otherwise flows through the Herondo Drain into Santa Monica Bay. Water quality grades for the Herondo Storm Drain are expected to improve to an “A” grade as a result of the project.

The proposed location for the project is under the greenbelt between Herondo and Second Street. When complete, the project will be contained completely underground and will include the installation of California-friendly plant habitat along the greenbelt.
Here's the map of the watershed and storm drain system that feeds into the troubled storm drain.
A map of the various South Bay sewers that feed into the Herondo venue drain, which lets out at Hermosa’s southern border. Rendering by Geosyntec
Here's a USGS map from 1963 with elevations of the area.  The greenbelt follows the old streetcar right of way a couple of blocks from the beach, north of Herondo (the straight street ending at the north side of the harbor and the border of the cities of Hermosa Beach and Redondo Beach).  The map shows the elevation of the greenbelt and park area as 30', but sea level has risen since then.

1963 USGS map of the area with elevation contours and benchmarks.
Notice that the park and greenbelt sit on top of former oil wells.  Imagine what interesting hydrocarbons would percolate up with the groundwater if it can't flow downwards due to encroaching seawater.

The Hermosa Beach staff plan would have screened the trash out of the water from the storm drain, sent the "first flush" of rainwater, which tends to have the heaviest pollutant and bacterial load, to the sewage plant; filtered the remaining rainwater, and then spread it under the greenbelt in a network of pipes.

The entire system would have been built underground and been invisible except for a few maintenance access points.

The rainwater would have served the dual purpose of pushing back against the seawater and watering the landscaping in the greenbelt.  This would have saved the city money in landscaping water and the neighborhood from the horror of watching water and a chemical and bacteria soup percolate up through the ground.

Roughly 100% of the current vegetation is non-native invasive species such as ice plant, mustard, and (highly flammable!) eucalyptus trees.  The abandoned plan would have replaced the vegetation with California natives or drought-tolerant non-invasive species that required little or no additional water.

A peaceful place to jog and walk, but think how much nicer it would look with native plants.  Can you see the yellow mustard blooming amidst the ice plant?  The invasive and flammable eucalyptus tree?

There is even some turf grass if you are playing environmental faux pas bingo.

If the state and a coalition of city governments were willing to pay millions to make your home safer and give you free relandscaping with water, you'd think the neighborhood would support it.

You'd think wrong.  In fact, the opposite happened.
“It looks like we're heading in the right direction to try to get everybody working together rather than having two separate groups to put as much pressure as we can on the City Council to do the right thing, to get it out of the residential area,” said Ira Ellman, who along with Jessica Guheen and Gina DeRosa, facilitated the Sunday meeting.

“It's literally in my backyard,” said DeRosa, about South Park. “But there are more big picture concerns.”

“The more I learn about this, the more I honestly think this is not the right project for Hermosa Beach,” said Guheen, who helped spearhead a 10-year renovation of South Park.

At the study session, the consensus from the crowd was that the “project is important, but the location is wrong.”

Concerns included the removal of a third of the trees on the greenbelt; liquefaction; moving utilities that line the greenbelt; pollutants in the soil; street closures and traffic during construction; odor and noise coming from the system after completed; structural integrity of homes; as well as lawsuits on other projects against Tetra Tech, the project contractor.
Check out this USGS geologic map of the area.  Not only was the neighborhood built on top of the site of former oil wells, but it's built on Qds=loose dune and drift sand.  Yup, those homes you see adjacent to the green belt in the photos above sit on loose sand and they claim this infiltration project will cause ground liquefaction.  The horse is already out of the barn on that one.


On March 26, 2019, the Hermosa Beach city council caved.  They cancelled the entire project, jeopardizing the state funding and trashing years of planning. HB doesn't want the infiltration project anywhere within their city boundaries.

By saying no to infiltration projects, they will continue to use more landscaping water in the short-term.  In the longer-term, HB will have to find the money to build a network of injection wells and pay for the water to put in them on their own.

Redondo Beach is looking at some sites a few blocks away where the project can be built.  Redondo Beach has a history of welcoming infiltration projects such as the NRB library and the one next to Aviation Blvd. This would mean more time spent planning another project from the ground up and possibly the loss of state matching funds.

Construction is always painful, but the result will be a cleaner bay and healthier landscape.  It will also protect the neighborhood near the beach as much as possible from sea level rise. We really need this project.

* ~20 years ago,  I went to a mixer for first time attendees of the American Meteorological Society's annual meeting.  Our names and locations were printed on our badges.  Mine said Los Angeles.  All evening long, I heard,

"Florida? Hurricanes! Cool!"

"Oklahoma?  Tornadoes!  Awesome!"

"Los Angeles?  I'm so sorry!"